1.5 - Solving the Consumer's Problem

ECON 306 • Microeconomic Analysis • Fall 2020 Ryan Safner
Assistant Professor of Economics
亿 safner@hood.edu
© ryansafner/microF20
© microf20.classes.ryansafner.com

The Consumer's Problem: Review

- The consumer's constrained optimization problem is:

1. Choose: < a consumption bundle >
2. In order to maximize: < utility >
3. Subject to: < income and market prices >

The Consumer's Problem: Tools

- We now have the tools to understand consumer choices:
- Budget constraint: consumer's constraints of income and market prices
- How the market trades off between two goods
- Utilility function: consumer's preferences to maximize
- How the consumer trades off between two goods

The Consumer's Problem: Verbally

- The consumer's constrained optimization problem:
choose a bundle of goods to maximize utility, subject to income and market prices

The Consumer's Problem: Mathematically

$$
\begin{gathered}
\max _{x, y} u(x, y) \\
\text { s.t. } p_{x} x+p_{y} y=m
\end{gathered}
$$

- This requires calculus to solve ${ }^{1}$. We will look at graphs instead!

${ }^{1}$ See the mathematical appendix in today's class notes on how to solve it with calculus, and an example.

The Consumer's Optimum: Graphically

- Graphical solution: Highest indifference curve tangent to budget constraint
- Bundle A!

The Consumer's Optimum: Graphically

- Graphical solution: Highest indifference curve tangent to budget constraint
- Bundle A!
- B or C spend all income, but a better combination exists
- Averages $>$ extremes!

The Consumer's Optimum: Graphically

- Graphical solution: Highest indifference curve tangent to budget constraint
- Bundle A!
- B or C spend all income, but a better combination exists
- Averages $>$ extremes!
- D is higher utility, but not affordable at current income \& prices

The Consumer's Optimum: Why Not B?

indiff. curve slope $>$ budget constr. slope

The Consumer's Optimum: Why Not B?

indiff. curve slope $>$ budget constr. slope

$$
\begin{aligned}
\left|M R S_{x, y}\right| & >\left|\frac{p_{x}}{p_{y}}\right| \\
\left|\frac{M U_{x}}{M U_{y}}\right| & >\left|\frac{p_{x}}{p_{y}}\right| \\
|-2| & >|-0.5|
\end{aligned}
$$

- Consumer would exchange at 2Y:1X
- Market exchange rate is 0.5Y:1X

The Consumer's Optimum: Why Not B?

indiff. curve slope $>$ budget constr. slope

$$
\begin{aligned}
\left|M R S_{x, y}\right| & >\left|\frac{p_{x}}{p_{y}}\right| \\
\left|\frac{M U_{x}}{M U_{y}}\right| & >\left|\frac{p_{x}}{p_{y}}\right| \\
|-2| & >|-0.5|
\end{aligned}
$$

- Consumer would exchange at $2 \mathrm{Y}: 1 \mathrm{X}$
- Market exchange rate is 0.5Y:1X
- Can spend less on y more on x and get more utility!

The Consumer's Optimum: Why Not C?

indiff. curve slope < budget constr. slope

The Consumer's Optimum: Why Not C?

indiff. curve slope < budget constr. slope

$$
\begin{aligned}
\left|M R S_{x, y}\right| & <\left|\frac{p_{x}}{p_{y}}\right| \\
\left|\frac{M U_{x}}{M U_{y}}\right| & <\left|\frac{p_{x}}{p_{y}}\right| \\
|-0.125| & <|-0.5|
\end{aligned}
$$

- Consumer would exchange at $0.125 \mathrm{Y}: 1 \mathrm{X}$
- Market exchange rate is 0.5Y:1X

The Consumer's Optimum: Why Not C?

indiff. curve slope < budget constr. slope

$$
\begin{aligned}
\left|M R S_{x, y}\right| & <\left|\frac{p_{x}}{p_{y}}\right| \\
\left|\frac{M U_{x}}{M U_{y}}\right| & <\left|\frac{p_{x}}{p_{y}}\right| \\
|-0.125| & <|-0.5|
\end{aligned}
$$

- Consumer would exchange at $0.125 \mathrm{Y}: 1 \mathrm{X}$
- Market exchange rate is 0.5Y:1X
- Can spend less on x, more on y and get more utility!

The Consumer's Optimum: Why A?

indiff. curve slope $=$ budget constr. slope

The Consumer's Optimum: Why A?

indiff. curve slope $=$ budget constr. slope

$$
\begin{aligned}
\left|M R S_{x, y}\right| & =\left|\frac{p_{x}}{p_{y}}\right| \\
\left|\frac{M U_{x}}{M U_{y}}\right| & =\left|\frac{p_{x}}{p_{y}}\right| \\
|-0.5| & =|-0.5|
\end{aligned}
$$

- Consumer would exchange at same rate as market
- No other combination of (x, y) exists at current prices \& income that could increase utility!

The Consumer's Optimum: Two Equivalent Rules

Rule 1

$$
\frac{M U_{x}}{M U_{y}}=\frac{p_{x}}{p_{y}}
$$

- Easier for calculation (slopes)

The Consumer's Optimum: Two Equivalent Rules

Rule 1

$$
\frac{M U_{x}}{M U_{y}}=\frac{p_{x}}{p_{y}}
$$

- Easier for calculation (slopes)

Rule 2

$$
\frac{M U_{x}}{p_{x}}=\frac{M U_{y}}{p_{y}}
$$

- Easier for intuition (next slide)

Visualizing the Equimarginal Rule

- Compare $M U_{x}$ per $\$ 1$ spent vs. $M U_{y}$ per \$1 spent
- Graphs on right are not indifference curves!

Visualizing the Equimarginal Rule

- Suppose you consume 4 of x and 12.5 of y (points B)

$$
\frac{M U_{x}}{p_{x}}>\frac{M U_{y}}{p_{y}}
$$

Visualizing the Equimarginal Rule

- Suppose you consume 4 of x and 12.5 of y (points B)

$$
\frac{M U_{x}}{p_{x}}>\frac{M U_{y}}{p_{y}}
$$

- More "bang for your buck" with x than y
- Consume more x, less y !

Visualizing the Equimarginal Rule

- At points A, consuming 10 of x and 5 of y

$$
\frac{M U_{x}}{p_{x}}=\frac{M U_{y}}{p_{y}}
$$

- No change (more x, less x, more y, less $y)$ that could increase your utility!
- The optimum! Cost-adjusted marginal utilities are equalized

The Consumer's Optimum: The Equimarginal Rule I

$$
\frac{M U_{x}}{p_{x}}=\frac{M U_{y}}{p_{y}}=\cdots=\frac{M U_{n}}{p_{n}}
$$

- Equimarginal Rule: consumption is optimized where the marginal utility per dollar spent is equalized across all n possible goods/decisions
- You will always choose an option that gives higher marginal utility (e.g. if $M U_{x}>M U_{y}$)
- But each option has a different cost, so we weight each option by its cost, hence $\frac{M U_{x}}{p_{x}}$

The Consumer's Optimum: The Equimarginal Rule II

- Any optimum in economics: no better alternatives exist under current constraints
- No possible change in your consumption that would increase your utility

Markets Equalize Everyone's MRS I

- Markets make it so everyone faces the same relative prices
- Budget constraint. slope, $-\frac{p_{x}}{p_{y}}$
- Note individuals' incomes, m, are certainly different!
- A person's optimal choice \Longrightarrow they make same tradeoff as the market
- Their MRS = relative price ratio
- markets equalize everyone's MRS

Markets Equalize Everyone's MRS II

Two people will very different income and preferences face the same market prices, and choose optimal consumption (points A and A^{\prime}) at an exchange rate of $0.5 \mathrm{Y}: 1 \mathrm{X}$

$$
u(x, y)=\sqrt{x y}, m=\$ 20, p_{x}=\$ 1, p_{y}=\$ 2
$$

$u(x, y)=\ln (x)+y, m=\$ 10, p_{x}=\$ 1, p_{y}=\$ 2$

Optimization and Equilibrium

- If people can learn and change their behavior, they will always switch to a higher-valued option
- If a person has no better choices (under current constraints), they are at an optimum
- If everyone is at an optimum, the system is in equilibrium

Practice I

Example: You can get utility from consuming bags of Almonds (a) and bunches of Bananas (b), according to the utility function:

$$
\begin{aligned}
u(a, b) & =a b \\
M U_{a} & =b \\
M U_{b} & =a
\end{aligned}
$$

You have an income of $\$ 50$, the price of Almonds is $\$ 10$, and the price of Bananas is $\$ 2$. Put Almonds on the horizontal axis and Bananas on the vertical axis.

1. What is your utility-maximizing bundle of Almonds and Bananas?
2. How much utility does this provide? [Does the answer to this matter?]

Practice II, Cobb-Douglas!

Example: You can get utility from consuming Burgers (b) and Fries (f), according to the utility function:

$$
\begin{aligned}
u(b, f) & =\sqrt{b f} \\
M U_{b} & =0.5 b^{-0.5} f^{0.5} \\
M U_{f} & =0.5 b^{0.5} f^{-0.5}
\end{aligned}
$$

You have an income of $\$ 20$, the price of Burgers is $\$ 5$, and the price of Fries is $\$ 2$. Put Burgers on the horizontal axis and Fries on the vertical axis.

1. What is your utility-maximizing bundle of Burgers and Fries?
2. How much utility does this provide?
