1.7 — Income & Substitution Effects

ECON 306 • Microeconomic Analysis • Fall 2020

Ryan Safner

Assistant Professor of Economics

- safner@hood.edu
- ryansafner/microF20
- microF20.classes.ryansafner.com

A Demand Function (Again)

 A consumer's demand (for good x) depends on current prices & income:

$$$q_x^D = q_x^D(m, p_x, p_y)$$

- How does demand for x change?
- 2. Cross-price effects \(\\left(\\frac{\Delta q_x^D\} \\Delta p_y\\right)\): how \(q_x^D\) changes
 with changes in prices of other goods (e.g. \(y)\)
- 3. (Own) Price effects \(\\left(\\frac{\Delta q_x^D\}\\ \text{Delta p_x}\\right)\\): how \(\q_x^D\\) changes
 with changes in price (of \(x)\\)

The (Own) Price Effect

The (Own) Price Effect

 Price effect: change in optimal consumption of a good associated with a change in its price, holding income and other prices constant

 $\frac{\Delta q_x^D}{\Delta p_x} < 0$

The law of demand: as the price of a good rises, people will tend to buy less of that good (and vice versa)

• i.e. the price effect is negative!

Decomposing the Price Effect

The price effect (law of demand) is actually the net result of two effects

- 1. (Real) income effect: change in consumption due to change in real purchasing power
- 2. Substitution effect: change in consumption due to change in relative prices

Price Effect \(=\) Real income effect \(+\) Substitution Effect

(Real) Income Effect

(Real) Income Effect: Demonstration

- Suppose there is only 1 good to consume, \(x\). You have a \$100 income, and the price of \(x\) is \$10. You consume 10 units of \(x\)
- Suppose the price of (x) falls to \$5. Your now consume 20 units of (x).
- This is the real income effect

(Real) Income Effect: Demonstration

- Real income effect: your consumption mix changes because of the change in the price of \(x\) changes your real income or purchasing power (the amount of goods you can buy)
- Note your actual (nominal) income (\$100)
 never changed!

(Real) Income Effect: Size

 The size of the income effect depends on how large a portion of your budget you spend on the good

• Large-budget items:

- e.g. Housing/apartment rent, car prices
- Price increase makes you much poorer
- Price decrease makes you much wealthier

(Real) Income Effect: Size

 The size of the income effect depends on how large a portion of your budget you spend on the good

• Small-budget items:

- e.g. pencils, toothpicks, candy
- Price changes don't have much of an effect on your wealth or change your behavior much

Substitution Effect

Substitution Effect: Demonstration

- Suppose there are 1000's of goods, none of them a major part of your budget
 - So real income effect is insignificant
- Suppose the price of one good, \(x\)
 increases
- You would consume less of \(x\) relative
 to other goods because \(x\) is now
 relatively more expensive
- That's the substitution effect

Substitution Effect: Demonstration

- Substitution effect: consumption mix changes because of a change in relative prices
- Buy more of the (now) relatively cheaper items
- Buy less of the (now) relatively more expensive item \((x)\)

Putting the Effects Together

Putting the Effects Together

- Real income effect: change in consumption due to change in real purchasing power
 - Can be positive (normal goods) or negative (inferior goods)
 - \circ Lower price of \(x\) means you can buy more \(x\), \(y\), or both (depending on your preferences between \(x\) and \(y\))
- Substitution effect: change in consumption due to change in relative prices
 - \circ If \(x\) gets cheaper relative to \(y\), consume \(\downarrow y\) (and \(\uparrow x\))
 - This is always the same direction! \((\downarrow\)) relatively expensive goods, \((uparrow\)) relatively cheaper goods)
 - This is why demand curves slope downwards!

Price Effect \(=\) Real income effect \(+\) Substitution Effect

Original optimal consumption \((A)\)

- Original optimal consumption \((A)\)
- (Total) price effect: \(A \rightarrow C\)
- Let's decompose this into the two effects

 Substitution effect: what you would choose under the new exchange rate to remain indifferent as before the change

- Substitution effect: what you would choose under the new exchange rate to remain indifferent as before the change
- Graphically: shift new budget constraint inwards until tangent with old indifference curve
- \(A \rightarrow B\) on same I.C. \((\uparrow\) \(x\), \(\downarrow\) \(y)\)
 - Point B *must* be a *different* point on the original curve!

- Substitution effect: what you would choose under the new exchange rate to remain indifferent as before the change
- Graphically: shift *new* budget constraint inwards until tangent with *old* indifference curve
- \(A \rightarrow B\) on same I.C. \((\uparrow\) \(x\), \(\downarrow\) \(y)\)
 - Point B *must* be a *different* point on the original curve!

 (Real) income effect: change in consumption due to the change in purchasing power from the change in price

- (Real) income effect: change in consumption due to the change in purchasing power from the change in price
- \(B\rightarrow C\) to new budget
 constraint (can buy more of \(x\) and/or
 \(y\))

- (Real) income effect: change in consumption due to the change in purchasing power from the change in price
- \(B\rightarrow C\) to new budget
 constraint (can buy more of \(x\) and/or
 \(y\))

Original optimal consumption \((A)\)

- Original optimal consumption \((A)\)
- Price of \(x\) falls, new optimal
 consumption at \((C)\)

- Original optimal consumption \((A)\)
- Price of \(x\) falls, new optimal
 consumption at \((C)\)
- Substitution effect: \(A \rightarrow B\)
 on same I.C. \((\uparrow\) cheaper \(x\)
 and \(\downarrow\) \(y)\)

- Original optimal consumption \((A)\)
- Price of \(x\) falls, new optimal consumption at \((C)\)
- Substitution effect: \(A \rightarrow B\)
 on same I.C. \((\uparrow\) cheaper \(x\)
 and \(\downarrow\) \(y)\)
- (Real) income effect: \(B \rightarrow C\)
 to new budget constraint (can buy more
 of \(x\) and/or \(y\))

- Original optimal consumption \((A)\)
- Price of \(x\) falls, new optimal consumption at \((C)\)
- Substitution effect: \(A \rightarrow B\)
 on same I.C. \((\uparrow\) cheaper \(x\)
 and \(\downarrow\) \(y)\)
- (Real) income effect: \(B \rightarrow C\)
 to new budget constraint (can buy more
 of \(x\) and/or \(y\))

• (Total) price effect: \(A \rightarrow C\)

• What about an inferior good (Ramen)?

- What about an inferior good (Ramen)?
- Substitution effect: \(A \rightarrow B\) on same I.C. \((\uparrow\) cheaper \(x\) and \(\downarrow\) \(y)\)

- What about an inferior good (Ramen)?
- Substitution effect: \(A \rightarrow B\) on same I.C. \((\uparrow\) cheaper \(x\) and \ (\downarrow\) \(y)\)
- (Real) income effect: \(B \rightarrow C\) to new budget constraint (can buy more of \((x\)) and/or \((y\))) is negative

- What about an inferior good (Ramen)?
- Substitution effect: \(A \rightarrow B\) on same I.C. \((\uparrow\) cheaper \(x\) and \ (\downarrow\) \(y)\)
- (Real) income effect: \(B \rightarrow C\) to new budget constraint (can buy more of \((x\)) and/or \((y\))) is negative
- (Total) price effect: \(A \rightarrow C\)

- What about an inferior good (Ramen)?
- Substitution effect: \(A \rightarrow B\) on same I.C. \((\uparrow\) cheaper \(x\) and \ (\downarrow\) \(y)\)
- (Real) income effect: \(B \rightarrow C\) to new budget constraint (can buy more of \((x\)) and/or \((y\))) is negative
- (Total) price effect: \(A \rightarrow C\)
- Price effect is still an \(\uparrow x\) from a \(\downarrow p_x\)!

Violating the Law of Demand

Example: What would it take to violate the law of demand?

Recap: Real Income and Substitution Effects

Price Effect \(=\) Real income effect \(+\) Substitution Effect

- Substitution effect: is always in the direction of the cheaper good
- Real Income effect: can be positive (normal) or negative (inferior)
- Law of Demand/Demand curves slope downwards (Price effect) mostly because of the substitution effect
 - Even (inferior) goods with negative real income effects overpowered by substitution effect
- Exception in the theoretical Giffen good: negative R.I.E. \(>\) S.E.
 - An upward sloping demand curve!

From Optimal Consumption Points to Demand

Demand Schedule

- Demand schedule expresses the quantity of good a person would be willing to buy \((q_D)\) at any given price \((p_x)\)
- Note: each of these is a consumer's optimum at a given price!

price	quantity
10	0
9	1
8	2
7	3
6	4
5	5
4	6
3	7
8	2
9	1

Demand Curve

- **Demand curve** graphically represents the demand schedule
- Also measures a person's maximum willingness to pay (WTP) for a given quantity

Demand Function

 Demand function relates quantity to price

Example: \$\$q=10-p\$\$

• Not graphable (wrong axes)!

Inverse Demand Function

- Inverse demand function relates price to quantity
 - Take demand function and solve for \ (p\)

Example: \$\$p=10-q\$\$

• Graphable (price on vertical axis)!

Inverse Demand Function

- Inverse demand function relates price to quantity
 - Take demand function and solve for \
 (p\)

Example: \$\$p=10-q\$\$

 Vertical intercept ("Choke price"): price where \((q_D=0\)) (\$10), just high enough to discourage any purchases

Inverse Demand Function

- Read two ways:
- Horizontally: at any given price, how many units person wants to buy
- Vertically: at any given quantity, the maximum willingness to pay (WTP) for that quantity
 - This way will be very useful later

Deriving a Demand Function I

- I will always give you a (linear) demand function
- Today's class notes page shows how you can derive actual demand functions from utility functions

Shifts in Demand I

 Note a simple (inverse) demand function only relates (own) price and quantity

Example: \(q=10-p\) or \(p=10-q\)

- What about all the other "determinants
 of demand" like income and other
 prices?
- They are captured in the vertical intercept (choke price)!

Shifts in Demand II

- A change in one of the "determinants of demand" will shift demand curve!
 - Change in income \((m\))
 - Change in **price of other goods** \(p_y\) (substitutes or complements)
 - Change in **preferences** or **expectations** about good \(x\)
 - Change in number of buyers
- Shows up in (inverse) demand function by a change in intercept (choke price)!

See my <u>Visualizing Demand Shifters</u>