1.7 - Income \& Substitution Effects

ECON 306 • Microeconomic Analysis • Fall 2020 Ryan Safner
Assistant Professor of Economics
, safner@hood.edu
© ryansafner/microF20
© microF20.classes.ryansafner.com

A Demand Function (Again)

- A consumer's demand (for good x) depends on current prices \& income:
\$\$q_x^D $=q_{-} x^{\wedge} D\left(m, p_{-} x, p_{-} y\right) \$ \$$
- How does demand for \mathbf{x} change?

1. Income effects $\backslash\left(\backslash \operatorname{left}\left(\backslash f r a c\left\{\backslash\right.\right.\right.$ Delta $\left.q_{-} x^{\wedge} D\right\}$ $\{\backslash$ Delta $m\} \backslash$ right $) \backslash$: how $\backslash\left(q_{-} x^{\wedge} D \backslash\right)$ changes with changes in income
2. Cross-price effects
(\left(\backslash frac $\left\{\backslash\right.$ Delta $\left.q_{-} x^{\wedge} D\right\}$ $\left\{\backslash\right.$ Delta $\left.p _y\right\} \backslash$ right $) \backslash$): how $\backslash\left(q_{-} x^{\wedge} D \backslash\right)$ changes with changes in prices of other goods (e.g.
(y)
)

3. (Own) Price effects
(\left(\frac\{\Delta q_x^D\} $\left\{\backslash\right.$ Delta $\left.p _x\right\} \backslash$ right $) \backslash$): how $\backslash\left(q_{-} x^{\wedge} D \backslash\right)$ changes with changes in price (of $\backslash(x) \backslash$)

The (Own) Price Effect

The (Own) Price Effect

- Price effect: change in optimal consumption of a good associated with a change in its price, holding income and other prices constant
$\$ \$ \backslash f r a c\left\{\backslash\right.$ Delta $\left.q_{-} x^{\wedge} D\right\}\left\{\backslash\right.$ Delta $\left.p_{-} x\right\}<0 \$ \$$
The law of demand: as the price of a good rises, people will tend to buy less of that good (and vice versa)
- i.e. the price effect is negative!

Decomposing the Price Effect

The price effect (law of demand) is actually the net result of two effects

1. (Real) income effect: change in consumption due to change in real purchasing power
2. Substitution effect: change in consumption due to change in relative prices

$$
\text { Price Effect } \backslash(=\backslash) \text { Real income effect } \backslash(+\backslash) \text { Substitution Effect }
$$

(Real) Income Effect

(Real) Income Effect: Demonstration

- Suppose there is only 1 good to consume, $\backslash(x \backslash)$. You have a $\$ 100$ income, and the price of $\backslash(x \backslash)$ is $\$ 10$. You consume 10 units of $\backslash(x \backslash)$
- Suppose the price of $\backslash(x \backslash)$ falls to $\$ 5$. Your now consume 20 units of $\backslash(x \backslash)$.
- This is the real income effect

(Real) Income Effect: Demonstration

- Real income effect: your consumption mix changes because of the change in the price of $\backslash(x \backslash)$ changes your real income or purchasing power (the amount of goods you can buy)
- Note your actual (nominal) income (\$100) never changed!

(Real) Income Effect: Size

- The size of the income effect depends on how large a portion of your budget you spend on the good
- Large-budget items:
- e.g. Housing/apartment rent, car prices
- Price increase makes you much poorer
- Price decrease makes you much wealthier

(Real) Income Effect: Size

- The size of the income effect depends on how large a portion of your budget you spend on the good
- Small-budget items:
- e.g. pencils, toothpicks, candy
- Price changes don't have much of an effect on your wealth or change your behavior much

Substitution Effect

Substitution Effect: Demonstration

- Suppose there are 1000 's of goods, none of them a major part of your budget
- So real income effect is insignificant
- Suppose the price of one good, $\backslash(x \backslash)$ increases
- You would consume less of $\backslash(x \backslash)$ relative to other goods because $\backslash(x \backslash)$ is now relatively more expensive
- That's the substitution effect

Substitution Effect: Demonstration

- Substitution effect: consumption mix changes because of a change in relative prices
- Buy more of the (now) relatively cheaper items
- Buy less of the (now) relatively more
 expensive item $\backslash((x) \backslash)$

Putting the Effects Together

Putting the Effects Together

- Real income effect: change in consumption due to change in real purchasing power
- Can be positive (normal goods) or negative (inferior goods)
- Lower price of $\backslash(x \backslash)$ means you can buy more $\backslash(x \backslash), \backslash(y \backslash)$, or both (depending on your preferences between $\backslash(x \backslash)$ and $\backslash(y \backslash))$
- Substitution effect: change in consumption due to change in relative prices
- If $\backslash(x \backslash)$ gets cheaper relative to $\backslash(y \backslash)$, consume $\backslash(\backslash$ downarrow $y \backslash)$ (and $\backslash(\backslash$ uparrow $x \backslash)$)
- This is always the same direction!
((\downarrow $\backslash)$ relatively expensive goods, \} (uparrow \backslash) relatively cheaper goods)
- This is why demand curves slope downwards!

Price Effect $\backslash(=\backslash)$ Real income effect $\backslash(+\backslash)$ Substitution Effect

Real Income and Substitution Effects, Graphically I

- Original optimal consumption
((A)
)

Optima with $u(x, y)=x^{0.5} y^{0.5}, m=100, p_{y}=3.33$

Real Income and Substitution Effects, Graphically I

- Original optimal consumption
((A)
)
- (Total) price effect:
(A \rightarrow $\mathrm{C} \backslash$)
- Let's decompose this into the two effects

Optima with $u(x, y)=x^{0.5} y^{0.5}, m=100, p_{y}=3.33$

Real Income and Substitution Effects, Graphically II

- Substitution effect: what you would choose under the new exchange rate to remain indifferent as before the change

Optima with $u(x, y)=x^{0.5} y^{0.5}, m=100, p_{y}=3.33$

Real Income and Substitution Effects, Graphically II

- Substitution effect: what you would choose under the new exchange rate to remain indifferent as before the change
- Graphically: shift new budget constraint inwards until tangent with old indifference curve
-
(A \rightarrow $\mathrm{B} \backslash)$ on same I.C. $\$ ((\uparrow $\backslash) \backslash(x \backslash), \(\backslash$ downarrow $\backslash) \backslash(y) \backslash)$

Optima with $u(x, y)=x^{0.5} y^{0.5}, m=100, p_{y}=3.33$

- Point B must be a different point on the original curve!

Real Income and Substitution Effects, Graphically II

- Substitution effect: what you would choose under the new exchange rate to remain indifferent as before the change
- Graphically: shift new budget constraint inwards until tangent with old indifference curve
-
(A \rightarrow $\mathrm{B} \backslash)$ on same I.C. $\$ ((\uparrow $\backslash) \backslash(x \backslash), \(\backslash$ downarrow $\backslash) \backslash(y) \backslash)$

Optima with $u(x, y)=x^{0.5} y^{0.5}, m=100, p_{y}=3.33$

- Point B must be a different point on the original curve!

Real Income and Substitution Effects, Graphically III

- (Real) income effect: change in consumption due to the change in purchasing power from the change in price

Optima with $u(x, y)=x^{0.5} y^{0.5}, m=100, p_{y}=3.33$

Real Income and Substitution Effects, Graphically III

- (Real) income effect: change in consumption due to the change in purchasing power from the change in price
- $\backslash(\mathrm{B}$ \rightarrow $\mathrm{C} \backslash)$ to new budget constraint (can buy more of $\backslash(x \backslash)$ and/or ((y))

Real Income and Substitution Effects, Graphically III

- (Real) income effect: change in consumption due to the change in purchasing power from the change in price
- $\backslash(\mathrm{B}$ \rightarrow $\mathrm{C} \backslash)$ to new budget constraint (can buy more of $\backslash(x \backslash)$ and/or ((y))

Real Income and Substitution Effects, Graphically IV

- Original optimal consumption
((A)
)

Real Income and Substitution Effects, Graphically IV

- Original optimal consumption
((A)
)
- Price of $\backslash(x \backslash)$ falls, new optimal consumption at $\backslash((\mathrm{C}) \backslash)$

Real Income and Substitution Effects, Graphically IV

- Original optimal consumption
((A)
)
- Price of $\backslash(x \backslash)$ falls, new optimal consumption at $\backslash((\mathrm{C}) \backslash)$
- Substitution effect:
(A \rightarrow $B \backslash$) on same I.C.
((\uparrow $\backslash)$ cheaper $\backslash(x \backslash)$ and
(\downarrow $\backslash) \backslash(y) \backslash)$

Real Income and Substitution Effects, Graphically IV

- Original optimal consumption
((A)
)
- Price of $\backslash(x \backslash)$ falls, new optimal consumption at $\backslash((\mathrm{C}) \backslash)$
- Substitution effect:
(A \rightarrow $B \backslash$) on same I.C.
((\uparrow
) cheaper
(x
) and
(\downarrow $\backslash) \backslash(y) \backslash)$
- (Real) income effect:
(B \rightarrow $C \backslash$) to new budget constraint (can buy more of $\backslash(x \backslash)$ and/or $\backslash(y \backslash)$)

Optima with $u(x, y)=x^{0.5} y^{0.5}, m=100, p_{y}=3.33$

Real Income and Substitution Effects, Graphically IV

- Original optimal consumption
((A)
)
- Price of $\backslash(x \backslash)$ falls, new optimal consumption at $\backslash((\mathrm{C}) \backslash)$
- Substitution effect:
(A \rightarrow $B \backslash$) on same I.C.
((\uparrow $\backslash)$ cheaper $\backslash(x \backslash)$ and
(\downarrow $\backslash) \backslash(y) \backslash)$
- (Real) income effect:
(B \rightarrow $C \backslash$) to new budget constraint (can buy more

Optima with $u(x, y)=x^{0.5} y^{0.5}, m=100, p_{y}=3.33$ of $\backslash(x \backslash)$ and/or $\backslash(y \backslash))$

- (Total) price effect:
(A \rightarrow $\mathrm{C} \backslash$)

Real Income and Substitution Effects: Inferior Good

- What about an inferior good (Ramen)?

Real Income and Substitution Effects: Inferior Good

- What about an inferior good (Ramen)?
- Substitution effect:
(A \rightarrow $\mathrm{B} \backslash$) on same I.C.
((\uparrow
) cheaper $\backslash(x \backslash)$ and \backslash (\downarrow \backslash)
(y)
)

Real Income and Substitution Effects: Inferior Good

- What about an inferior good (Ramen)?
- Substitution effect:
(A \rightarrow $\mathrm{B} \backslash$) on same I.C.
((\uparrow
) cheaper $\backslash(x \backslash)$ and \backslash (\downarrow \backslash)
(y)
)
- (Real) income effect:
(B \rightarrow $C \backslash$) to new budget constraint (can buy more of \backslash $(x \backslash)$ and/or $\backslash(y \backslash)$) is negative

Real Income and Substitution Effects: Inferior Good

- What about an inferior good (Ramen)?
- Substitution effect:
(A \rightarrow $B \backslash$) on same I.C.
((\uparrow
) cheaper $\backslash(x \backslash)$ and \backslash (\downarrow \backslash)
(y)
)
- (Real) income effect:
(B \rightarrow $C \backslash$) to new budget constraint (can buy more of \backslash ($\mathrm{x} \backslash$) and/or $\backslash(\mathrm{y} \backslash)$) is negative
- (Total) price effect:
(A \rightarrow $\mathrm{C} \backslash$)

Real Income and Substitution Effects: Inferior Good

- What about an inferior good (Ramen)?
- Substitution effect:
(A \rightarrow $\mathrm{B} \backslash$) on same I.C.
((\uparrow $\backslash)$ cheaper $\backslash(x \backslash)$ and \backslash (\downarrow \backslash)
(y)
)
- (Real) income effect:
(B \rightarrow $C \backslash$) to new budget constraint (can buy more of \backslash ($x \backslash$) and/or $\backslash(y \backslash)$) is negative
- (Total) price effect:
(A \rightarrow $\mathrm{C} \backslash$)

- Price effect is still an
(\uparrow $\mathrm{x} \backslash)$ from a
(\downarrow p_x 1)!

Violating the Law of Demand

Example: What would it take to violate the law of demand?

Recap: Real Income and Substitution Effects

Price Effect $\backslash(=\backslash)$ Real income effect $\backslash(+\backslash)$ Substitution Effect

- Substitution effect: is always in the direction of the cheaper good
- Real Income effect: can be positive (normal) or negative (inferior)
- Law of Demand/Demand curves slope downwards (Price effect) mostly because of the substitution effect
- Even (inferior) goods with negative real income effects overpowered by substitution effect
- Exception in the theoretical Giffen good: negative R.I.E.
(>
) S.E.
- An upward sloping demand curve!

From Optimal Consumption Points to Demand

Demand Schedule

- Demand schedule expresses the quantity of good a person would be willing to buy $\backslash\left(\left(q_{-} \mathrm{D}\right) \backslash\right)$ at any given price $\backslash\left(\left(\mathrm{p} _\mathrm{x}\right) \backslash\right)$

price	quantity
10	0
9	1
8	2
7	3
6	4
5	5
4	6
3	7
8	2
9	1

Demand Curve

- Demand curve graphically represents the demand schedule
- Also measures a person's maximum willingness to pay (WTP) for a given quantity
- Law of Demand (price effect)
(\implies
) Demand curves always slope downwards

Demand Function

- Demand function relates quantity to price

Example: $\$ \$ q=10-p \$ \$$

- Not graphable (wrong axes)!

Inverse Demand Function

- Inverse demand function relates price to quantity
- Take demand function and solve for \} ($\mathrm{p} \backslash$)

Example: \$\$p=10-q\$\$

- Graphable (price on vertical axis)!

Inverse Demand Function

- Inverse demand function relates price to quantity
- Take demand function and solve for $\$ ($\mathrm{p} \backslash$)

Example: \$\$p=10-q\$\$

- Vertical intercept ("Choke price"): price where $\backslash\left(q_{-} \mathrm{D}=0 \backslash\right)$ (\$10), just high enough to discourage any purchases

Inverse Demand Function

- Read two ways:
- Horizontally: at any given price, how many units person wants to buy
- Vertically: at any given quantity, the maximum willingness to pay (WTP) for that quantity
- This way will be very useful later

Deriving a Demand Curve Graphically

Demand function: $0.5 \mathrm{~m} / \mathrm{p}_{\mathrm{x}}$; Inverse Demand function: $\mathrm{p}_{\mathrm{x}}=0.5 \mathrm{~m} / \mathrm{x}$

Deriving a Demand Curve Graphically

Demand function: $0.5 \mathrm{~m} / \mathrm{p}_{\mathrm{x}}$; Inverse Demand function: $\mathrm{p}_{\mathrm{x}}=0.5 \mathrm{~m} / \mathrm{x}$

Deriving a Demand Curve Graphically

Demand function: $0.5 \mathrm{~m} / \mathrm{p}_{\mathrm{x}}$; Inverse Demand function: $\mathrm{p}_{\mathrm{x}}=0.5 \mathrm{~m} / \mathrm{x}$

Deriving a Demand Curve Graphically

Demand function: $0.5 \mathrm{~m} / \mathrm{p}_{\mathrm{x}}$; Inverse Demand function: $\mathrm{p}_{\mathrm{x}}=0.5 \mathrm{~m} / \mathrm{x}$

Deriving a Demand Function I

- I will always give you a (linear) demand function
- Today's class notes page shows how you can derive actual demand functions from utility functions

Shifts in Demand I

- Note a simple (inverse) demand function only relates (own) price and quantity

Example: $\backslash(q=10-p \backslash)$ or $\backslash(p=10-q \backslash)$

- What about all the other "determinants of demand" like income and other prices?
- They are captured in the vertical intercept (choke price)!

Shifts in Demand II

- A change in one of the "determinants of demand" will shift demand curve!
- Change in income $\backslash(\mathrm{m} \backslash)$
- Change in price of other goods \} (p_y
) (substitutes or complements)
- Change in preferences or expectations about good $\backslash(x \backslash)$
- Change in number of buyers
- Shows up in (inverse) demand function by a change in intercept (choke price)!

- See my Visualizing Demand Shifters

