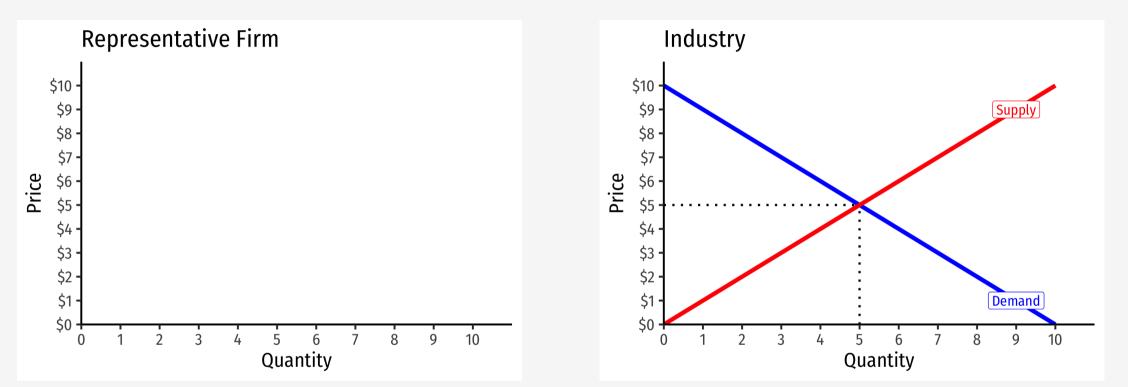
2.5 — Short Run Profit Maximization
ECON 306 · Microeconomic Analysis · Fall 2020
Ryan Safner
Assistant Professor of Economics
✓ safner@hood.edu

O<u>ryansafner/microF20</u>

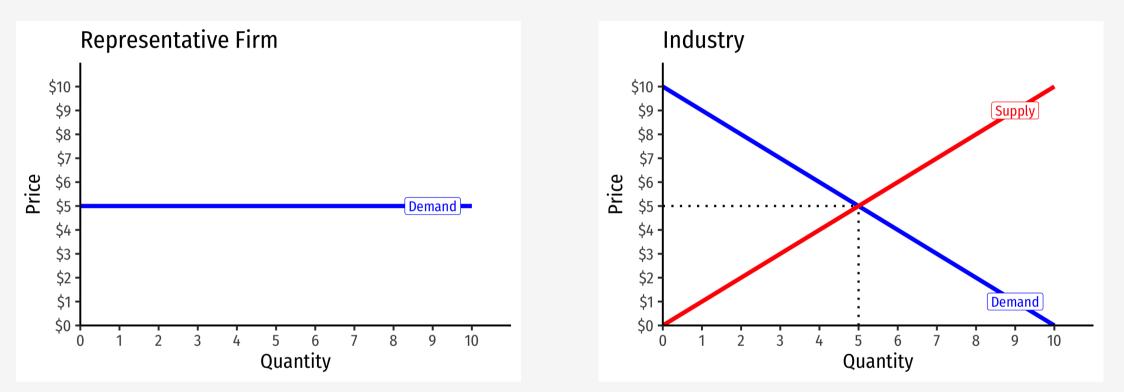
MicroF20.classes.ryansafner.com

Revenues

Revenues for Firms in *Competitive* **Industries I**

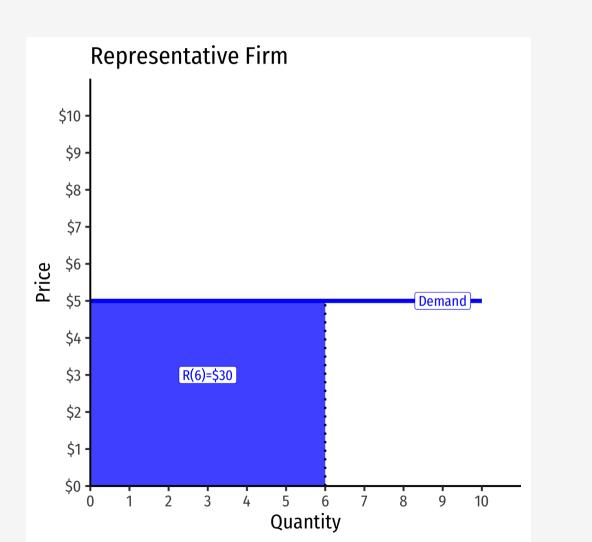


Revenues for Firms in *Competitive* **Industries I**



- Demand for a firm's product is **perfectly elastic** at the market price
- Where did the supply curve come from? You'll see

Revenues for Firms in *Competitive* **Industries II**



• Total Revenue R(q) = pq

Average and Marginal Revenues

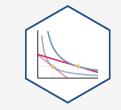
• Average Revenue: revenue per unit of output

$$AR(q) = \frac{R}{q}$$

- Is *always* equal to the price! Why?
- Marginal Revenue: change in revenues for each additional unit of output sold:

$$MR(q) = \frac{\Delta R(q)}{\Delta q} \approx \frac{R_2 - R_1}{q_2 - q_1}$$

- $\circ~$ Calculus: first derivative of the revenues function
- For a *competitive* firm, always equal to the price!



Average and Marginal Revenues: Example

Example: A firm sells bushels of wheat in a very competitive market. The current market price is \$10/bushel.

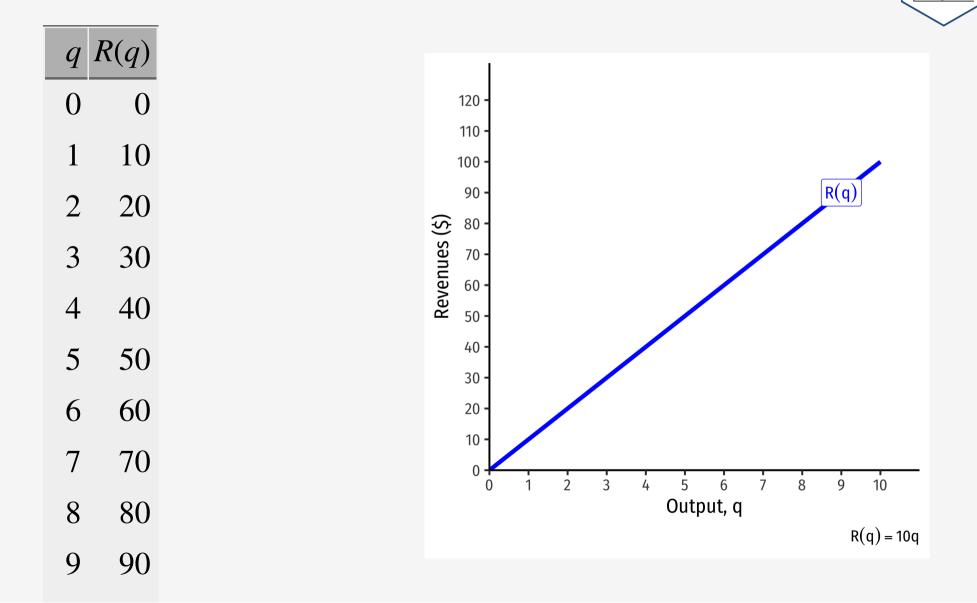
For the 1st bushel sold:

- What is the total revenue?
- What is the average revenue?

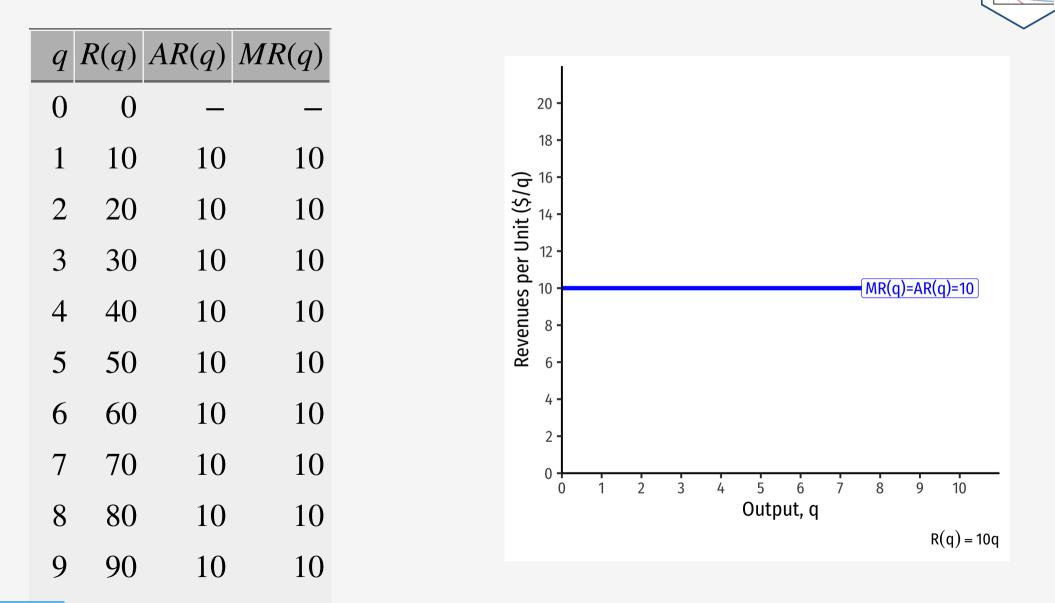
For the 2nd bushel sold:

- What is the total revenue?
- What is the average revenue?
- What is the marginal revenue?

Total Revenue, Example: Visualized

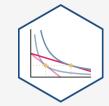


Average and Marginal Revenue, Example: Visualized



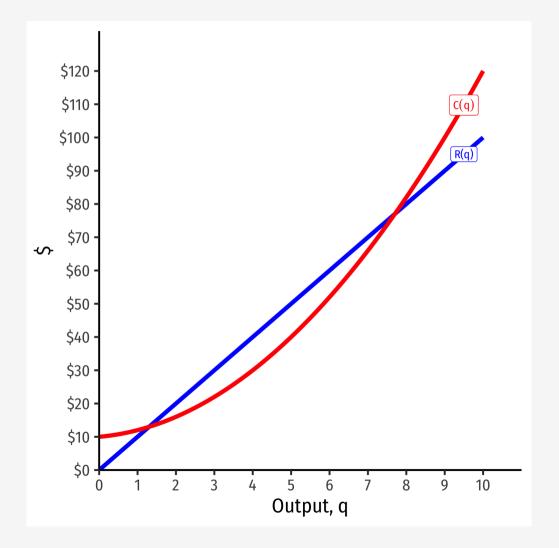
Recall: The Firm's Two Problems

- 1st Stage: firm's profit maximization problem:
- 1. Choose: < output >
- 2. In order to maximize: < profits >
- We'll cover this later...first we'll explore:
- 2nd Stage: firm's cost minimization problem:
- 1. Choose: < inputs >
- 2. In order to *minimize*: < cost >
- 3. Subject to: < producing the optimal output >
- Minimizing costs \iff maximizing profits



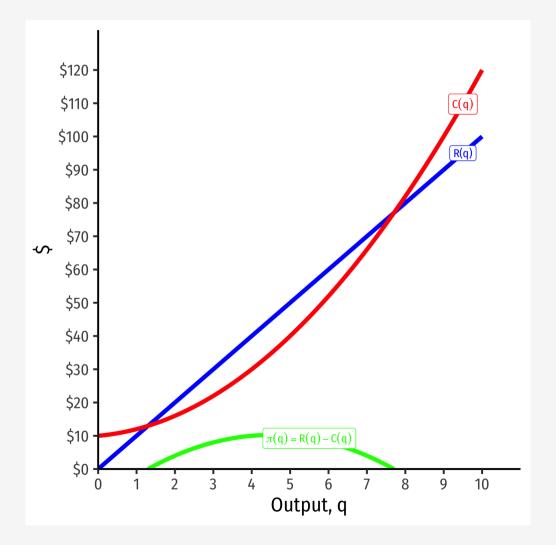


• $\pi(q) = \mathbf{R}(q) - \mathbf{C}(q)$

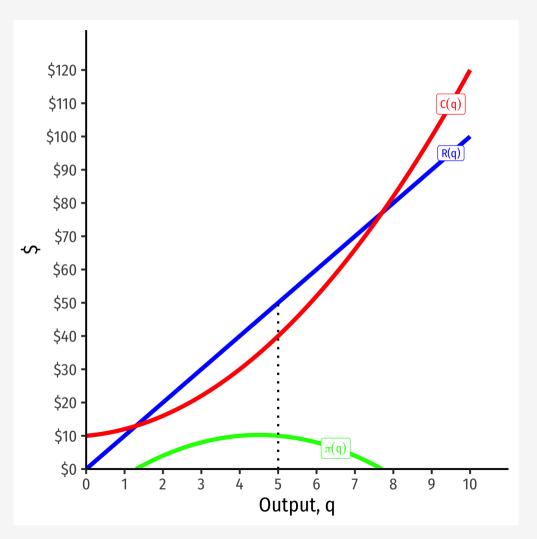




• $\pi(q) = \mathbf{R}(q) - \mathbf{C}(q)$

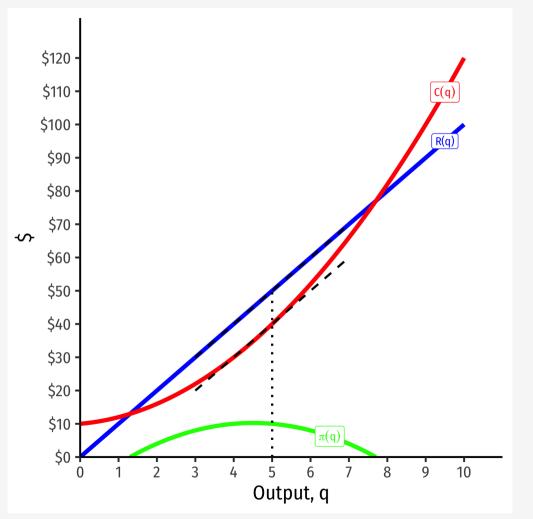


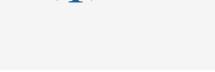
- $\pi(q) = \mathbf{R}(q) \mathbf{C}(q)$
- Graph: find q^* to max $\pi \implies q^*$ where max distance between R(q) and C(q)



- $\pi(q) = \mathbf{R}(q) \mathbf{C}(q)$
- Graph: find q^* to max $\pi \implies q^*$ where max distance between R(q) and C(q)
- Slopes must be equal:

MR(q) = MC(q)

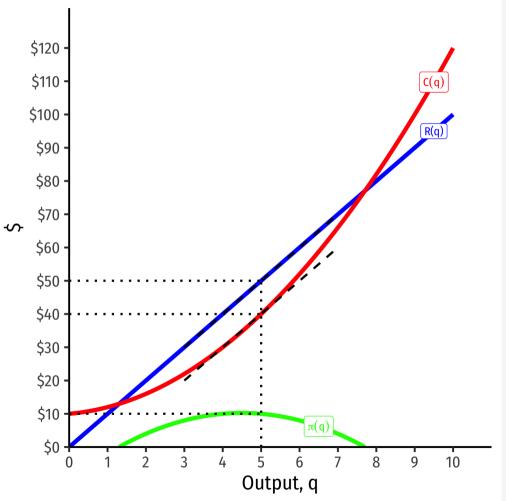




- $\pi(q) = \mathbf{R}(q) \mathbf{C}(q)$
- Graph: find q^* to max $\pi \implies q^*$ where max distance between R(q) and C(q)
- Slopes must be equal:

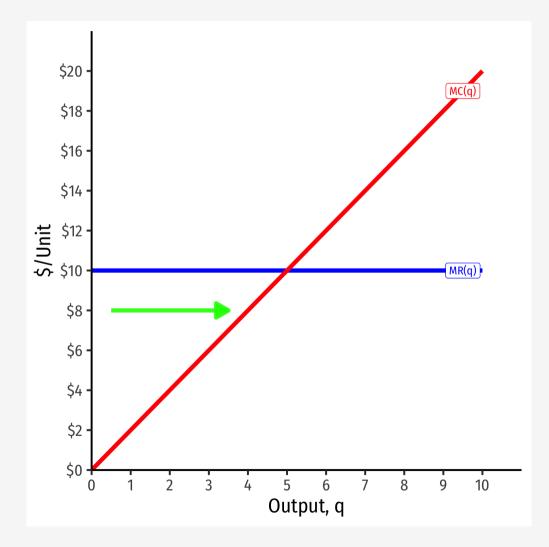
MR(q) = MC(q)

• At $q^* = 5$: $\circ R(q) = 50$ $\circ C(q) = 40$ $\circ \pi(q) = 10$



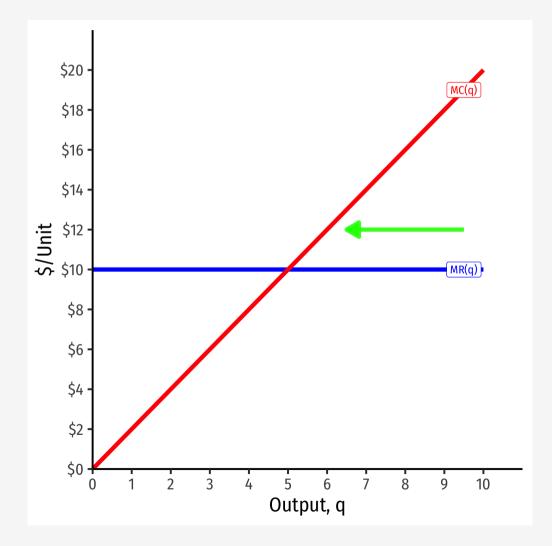
Visualizing Profit Per Unit As MR(q) and MC(q)

• At low output $q < q^*$, can increase π by producing *more*: MR(q) > MC(q)



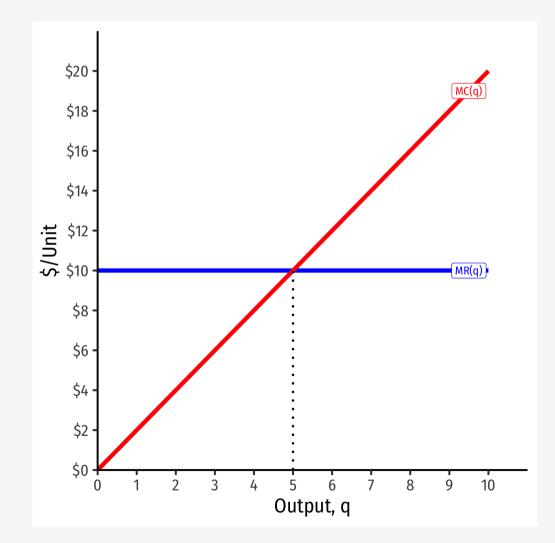
Visualizing Profit Per Unit As MR(q) and MC(q)

• At high output $q > q^*$, can increase π by producing *less*: MR(q) < MC(q)



Visualizing Profit Per Unit As MR(q) and MC(q)

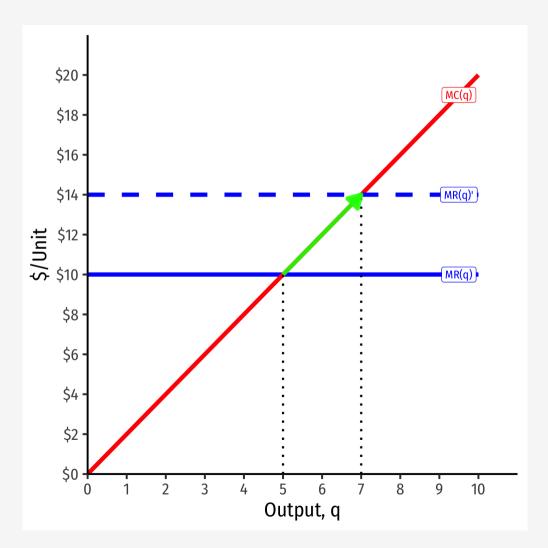
• π is *maximized* where MR(q) = MC(q)



Comparative Statics

If Market Price Changes I

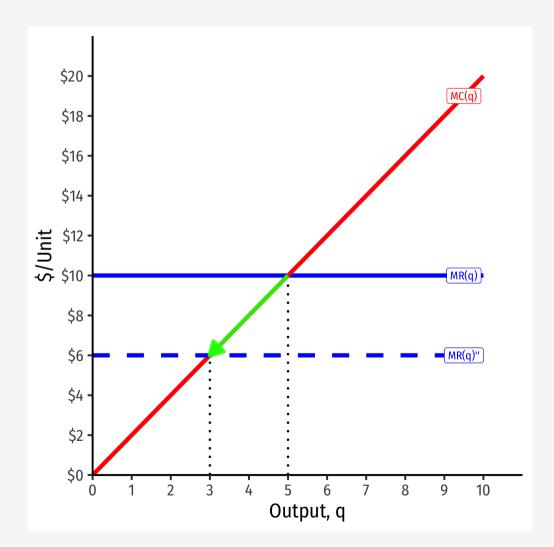
- Suppose the market price *increases*
- Firm (always setting MR = MC) will respond by *producing more*





If Market Price Changes II

- Suppose the market price *decreases*
- Firm (always setting MR = MC) will respond by *producing more*



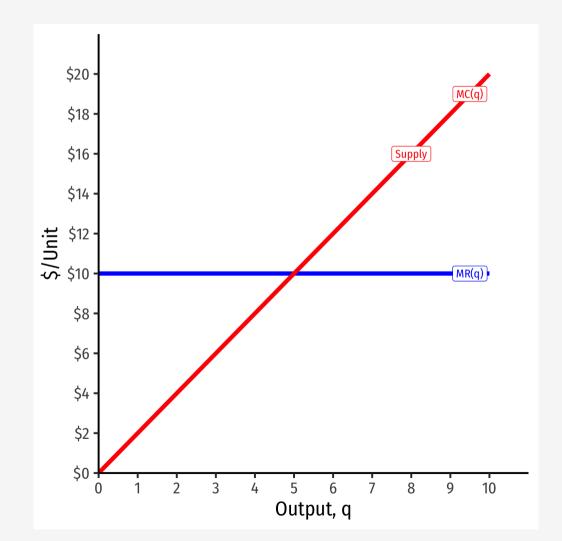
If Market Price Changes II

 The firm's marginal cost curve is its (inverse) supply curve[†]

Supply = MC(q)

- How it will supply the optimal amount of output in response to the market price
- There is an exception to this! We will see shortly!

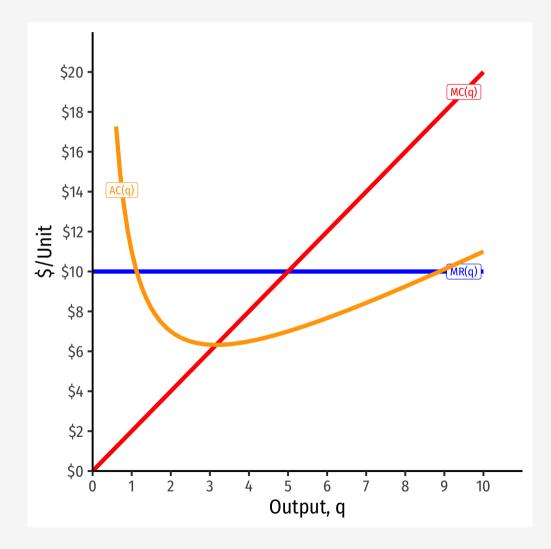
Mostly...there is an exception we will see shortly!

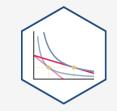


Calculating Profit

• Profit is

$$\pi(q) = R(q) - C(q)$$



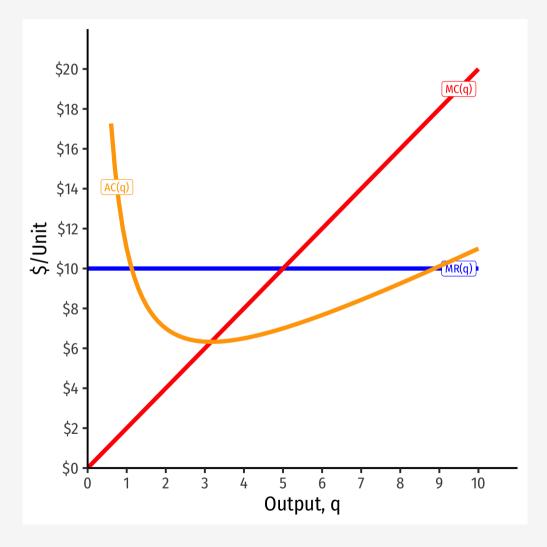


• Profit is

$$\pi(q) = R(q) - C(q)$$

• Profit per unit can be calculated as:

$$\frac{\pi(q)}{q} = AR(q) - AC(q)$$
$$= p - AC(q)$$



• Profit is

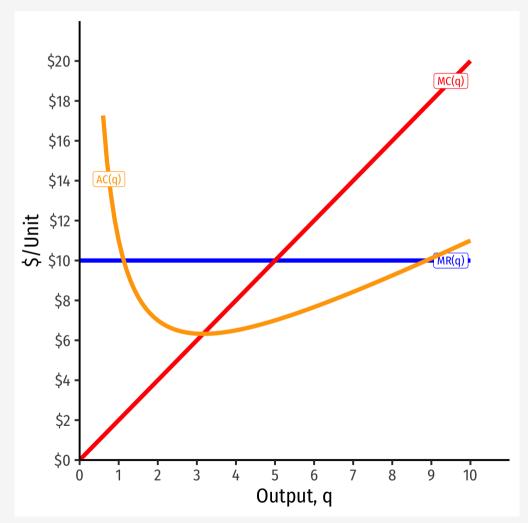
$$\pi(q) = R(q) - C(q)$$

• Profit per unit can be calculated as:

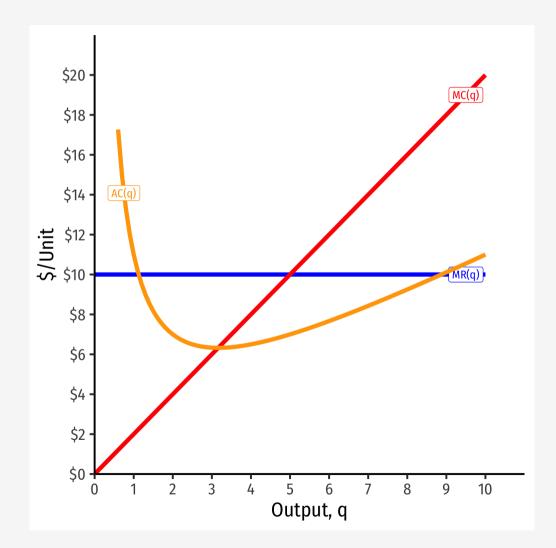
$$\frac{\pi(q)}{q} = AR(q) - AC(q)$$
$$= p - AC(q)$$

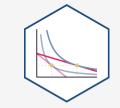
• Multiply by *q* to get total profit:

 $\pi(q) = q \left[p - AC(q) \right]$



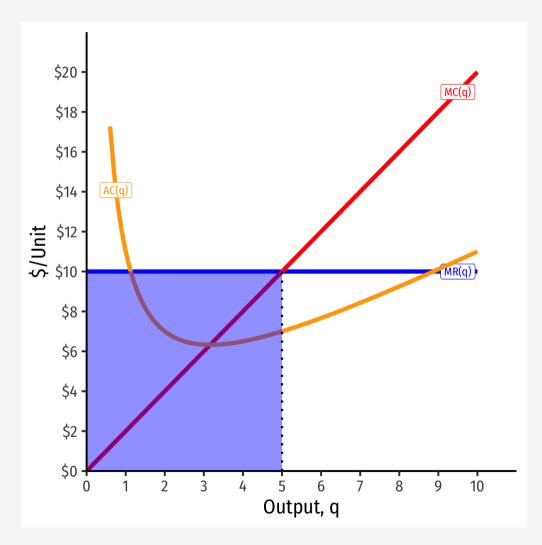
- At market price of p* = \$10
- At q* = 5 (per unit):
- At q* = 5 (totals):





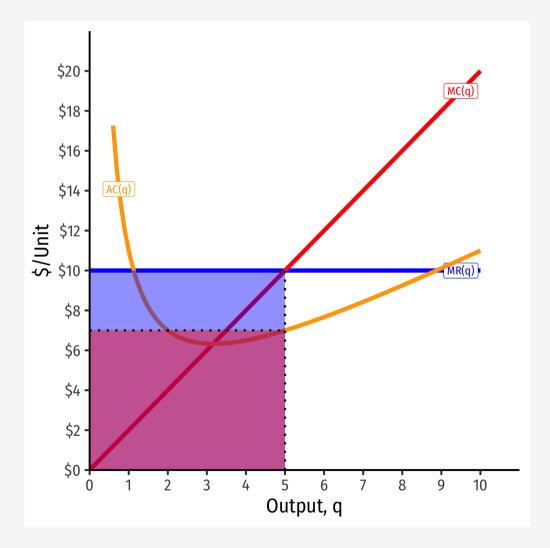
- At market price of p* = \$10
- At q* = 5 (per unit):
 - AR(5) = \$10/unit
- At q* = 5 (totals):

• R(5) = \$50



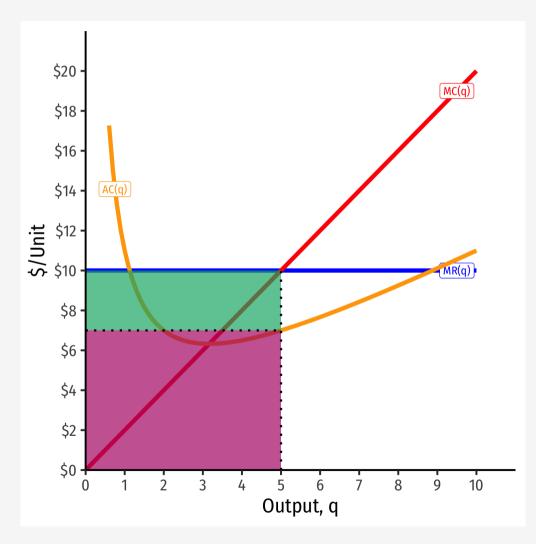
- At market price of p* = \$10
- At q* = 5 (per unit):
 - AR(5) = \$10/unit
 AC(5) = \$7/unit
- At q* = 5 (totals):

R(5) = \$50
C(5) = \$35



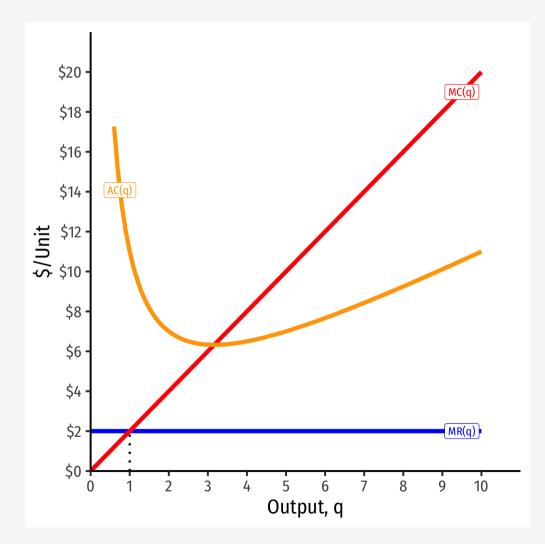
- At market price of p* = \$10
- At q* = 5 (per unit):
 - AR(5) = \$10/unit
 AC(5) = \$7/unit
 - A π (5) = \$3/unit
- At q* = 5 (totals):

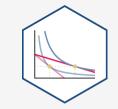
R(5) = \$50
C(5) = \$35
π = \$15





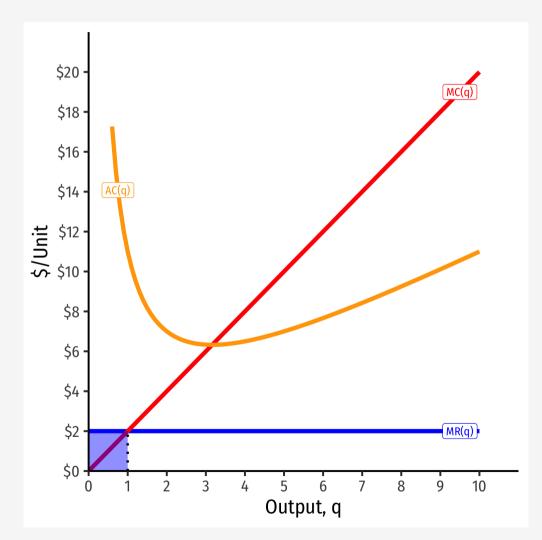
- At market price of p* = \$2
- At q* = 1 (per unit):
- At q* = 1 (totals):





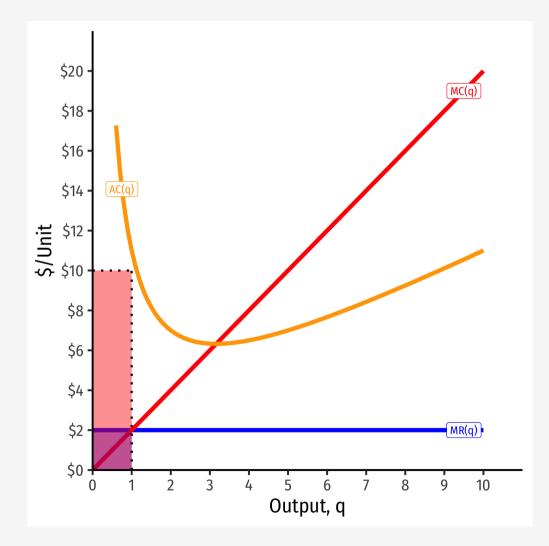
- At market price of p* = \$2
- At q* = 1 (per unit):
 - AR(1) = \$2/unit
- At q* = 1 (totals):

• R(1) = \$2

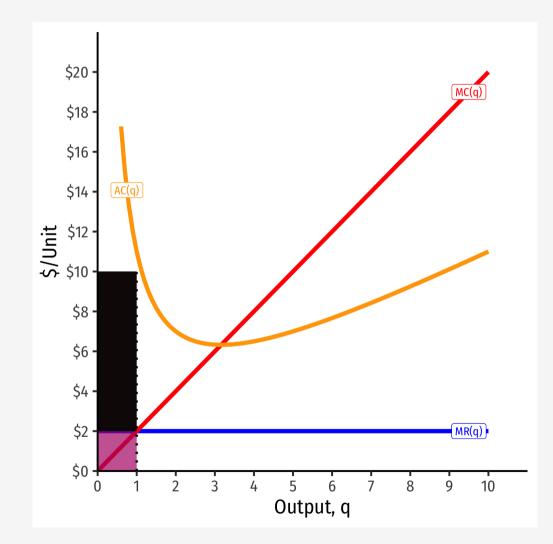


- At market price of p* = \$2
- At q* = 1 (per unit):
 - AR(1) = \$2/unit
 AC(1) = \$10/unit
- At q* = 1 (totals):

R(1) = \$2
C(1) = \$10



- At market price of p* = \$2
- At q* = 1 (per unit):
 - AR(1) = \$2/unit
 AC(1) = \$10/unit
 - $A\pi(1) = -\$8/unit$
- At q* = 1 (totals):
 - R(1) = \$2
 - C(1) = \$10



Short-Run Shut-Down Decisions

Short-Run Shut-Down Decisions

- What if a firm's profits at q^* are **negative** (i.e. it earns **losses**)?
- Should it produce at all?

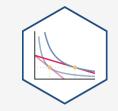
- Suppose firm chooses to produce **nothing** (q = 0):
- If it has **fixed costs** (f > 0), its profits are:

$$\pi(q) = pq - C(q)$$

- Suppose firm chooses to produce **nothing** (q = 0):
- If it has **fixed costs** (*f* > 0), its profits are:

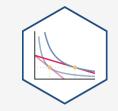
$$\pi(q) = pq - C(q)$$

$$\pi(q) = pq - f - VC(q)$$



- Suppose firm chooses to produce $\mathbf{nothing} (q = 0)$:
- If it has **fixed costs** (*f* > 0), its profits are:

$$\begin{aligned} \pi(q) &= pq - C(q) \\ \pi(q) &= pq - f - VC(q) \\ \pi(0) &= -f \end{aligned}$$



• A firm should choose to produce nothing (q = 0) only when:

 π from producing < π from not producing

• A firm should choose to produce nothing (q = 0) only when:

 π from producing < π from not producing $\pi(q) < -f$

• A firm should choose to produce nothing (q = 0) only when:

 $\pi \text{ from producing } < \pi \text{ from not producing}$ $\pi(q) < -f$ pq - VC(q) - f < -f

• A firm should choose to produce nothing (q = 0) only when:

 $\pi \text{ from producing } < \pi \text{ from not producing}$ $\pi(q) < -f$ pq - VC(q) - f < -fpq - VC(q) < 0

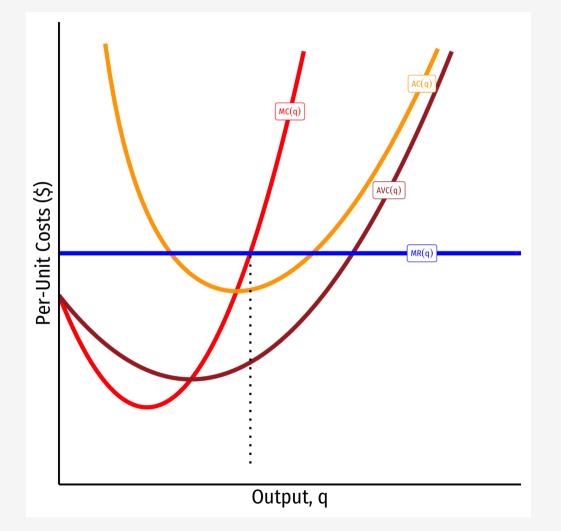
• A firm should choose to produce nothing (q = 0) only when:

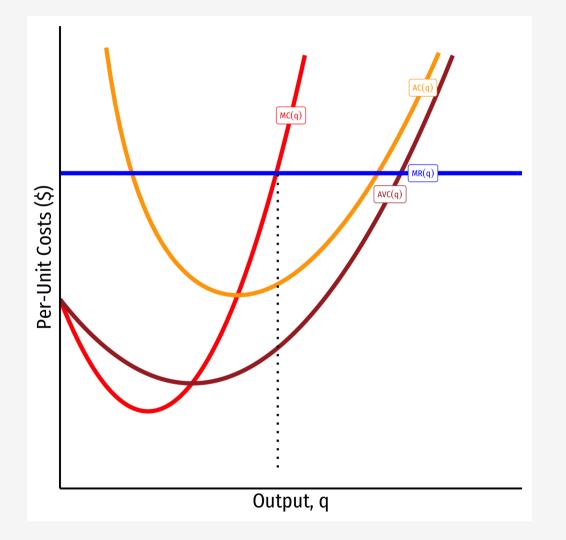
 $\pi \text{ from producing } < \pi \text{ from not producing}$ $\pi(q) < -f$ pq - VC(q) - f < -f pq - VC(q) < 0 pq < VC(q)

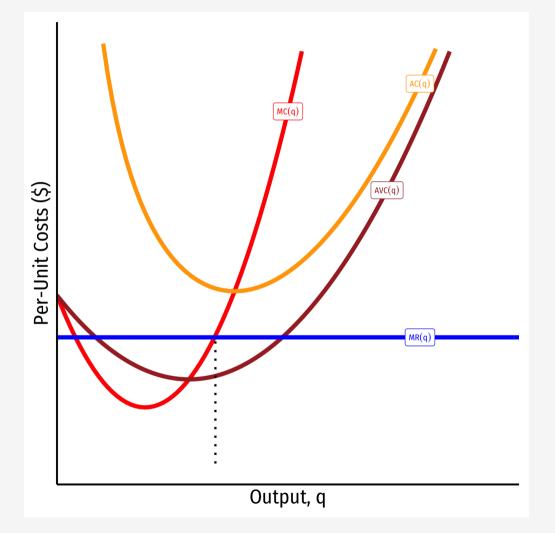
• A firm should choose to produce nothing (q = 0) only when:

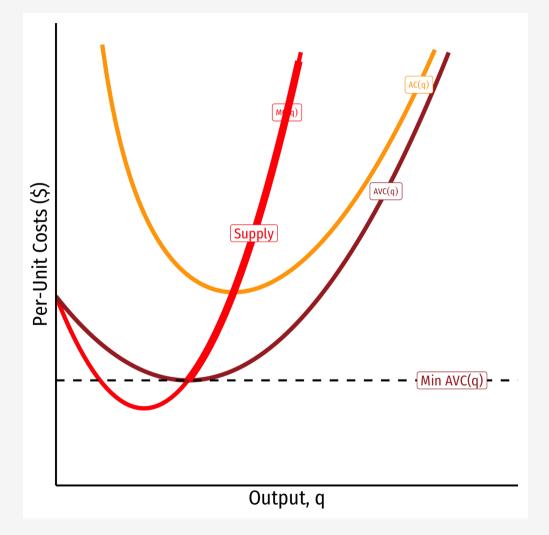
 $\pi \text{ from producing } < \pi \text{ from not producing}$ $\pi(q) < -f$ pq - VC(q) - f < -f pq - VC(q) < 0 pq < VC(q) $\mathbf{p}q < VC(q)$ $\mathbf{p}q < \mathbf{AVC}(\mathbf{q})$

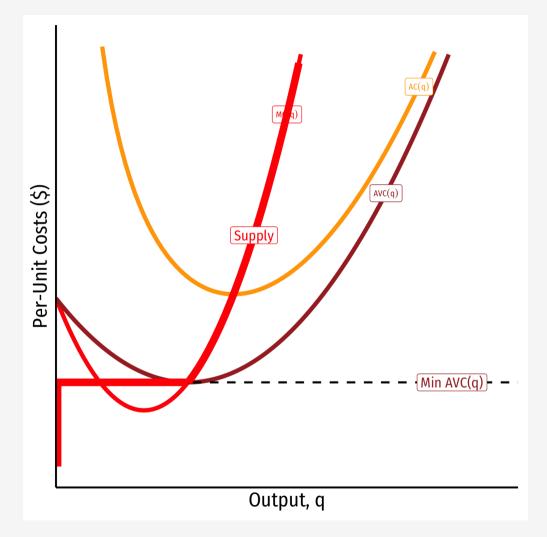
• Shut down price: firm will shut down production *in the short run* when p < AVC(q)





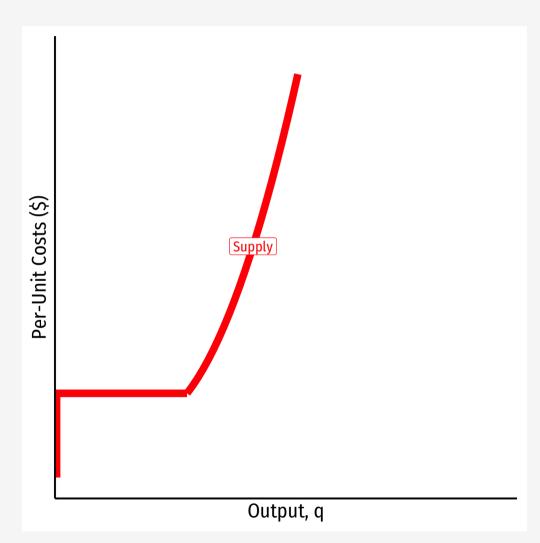






Firm's short run (inverse) supply:

$$\begin{cases} p = MC(q) & \text{if } p \ge AVC \\ q = 0 & \text{If } p < AVC \end{cases}$$



Firm's short run (inverse) supply:

$$\begin{cases} p = MC(q) & \text{if } p \ge AVC \\ q = 0 & \text{If } p < AVC \end{cases}$$

Summary:

- 1. Choose q^* such that MR(q) = MC(q)
- **2.** Profit $\pi = q[p AC(q)]$
- 3. Shut down if p < AVC(q)

Firm's short run (inverse) supply:

$$\begin{cases} p = MC(q) & \text{if } p \ge AVC \\ q = 0 & \text{If } p < AVC \end{cases}$$

Choosing the Profit-Maximizing Output q^* : Example

Example: Bob's barbershop gives haircuts in a very competitive market, where barbers cannot differentiate their haircuts. The current market price of a haircut is \$15. Bob's daily short run costs are given by:

$$C(q) = 0.5q^2$$
$$MC(q) = q$$

1. How many haircuts per day would maximize Bob's profits?

2. How much profit will Bob earn per day?

3. Find Bob's shut down price.