2.5 - Short Run Profit Maximization

 ECON 306 • Microeconomic Analysis • Fall 2020 Ryan SafnerAssistant Professor of Economics
/ safner@hood.edu
Q ryansafner/microF20
O. microf20.classes.ryansafner.com

Revenues

Revenues for Firms in Competitive Industries I

Revenues for Firms in Competitive Industries I

- Demand for a firm's product is perfectly elastic at the market price
- Where did the supply curve come from? You'll see

Revenues for Firms in Competitive Industries II

Representative Firm

- Total Revenue $R(q)=p q$

Average and Marginal Revenues

- Average Revenue: revenue per unit of output

$$
A R(q)=\frac{R}{q}
$$

- Is always equal to the price! Why?
- Marginal Revenue: change in revenues for each additional unit of output sold:

$$
\operatorname{MR}(q)=\frac{\Delta R(q)}{\Delta q} \approx \frac{R_{2}-R_{1}}{q_{2}-q_{1}}
$$

- Calculus: first derivative of the revenues function
- For a competitive firm, always equal to the price!

Average and Marginal Revenues: Example

Example: A firm sells bushels of wheat in a very competitive market. The current market price is \$10/bushel.

For the $1^{\text {st }}$ bushel sold:

- What is the total revenue?
- What is the average revenue?

For the $2^{\text {nd }}$ bushel sold:

- What is the total revenue?
- What is the average revenue?
- What is the marginal revenue?

Total Revenue, Example: Visualized

q	
0	$R(q)$
1	0
2	20
3	30
4	40
5	50
6	60
7	70
8	80
9	90

Average and Marginal Revenue, Example: Visualized

q	$R(q)$	$A R(q)$	$M R(q)$
0	0	-	-
1	10	10	10
2	20	10	10
3	30	10	10
4	40	10	10
5	50	10	10
6	60	10	10
7	70	10	10
8	80	10	10
9	90	10	10

Recall: The Firm's Two Problems

- $1^{\text {st }}$ Stage: firm's profit maximization problem:

1. Choose: < output >
2. In order to maximize: < profits >

- We'll cover this later...first we'll explore:
- $2^{\text {nd }}$ Stage: firm's cost minimization problem:

1. Choose: < inputs >
2. In order to minimize: < cost >
3. Subject to: < producing the optimal output >

- Minimizing costs \Longleftrightarrow maximizing profits

Visualizing Total Profit As $R(q)-C(q)$

- $\pi(q)=R(q)-C(q)$

Visualizing Total Profit As $R(q)-C(q)$

- $\pi(q)=R(q)-C(q)$

Visualizing Total Profit As $R(q)-C(q)$

- $\pi(q)=R(q)-C(q)$
- Graph: find q^{*} to $\max \pi \Longrightarrow q^{*}$ where max distance between $R(q)$ and $C(q)$

Visualizing Total Profit As $R(q)-C(q)$

- $\pi(q)=R(q)-C(q)$
- Graph: find q^{*} to $\max \pi \Longrightarrow q^{*}$ where max distance between $R(q)$ and $C(q)$
- Slopes must be equal:

$$
M R(q)=M C(q)
$$

Visualizing Total Profit As $R(q)-C(q)$

- $\pi(q)=R(q)-C(q)$
- Graph: find q^{*} to $\max \pi \Longrightarrow q^{*}$ where max distance between $R(q)$ and $C(q)$
- Slopes must be equal:

$$
M R(q)=M C(q)
$$

- At $q^{*}=5$:
- $R(q)=50$
- $C(q)=40$
- $\pi(q)=10$

Visualizing Profit Per Unit As $M R(q)$ and $M C(q)$

- At low output $q<q^{*}$, can increase π by producing more: $M R(q)>M C(q)$

Visualizing Profit Per Unit As $M R(q)$ and $M C(q)$

- At high output $q>q^{*}$, can increase π by producing less. $M R(q)<M C(q)$

Visualizing Profit Per Unit As $M R(q)$ and $M C(q)$

- π is maximized where
$M R(q)=M C(q)$

Comparative Statics

If Market Price Changes I

- Suppose the market price increases
- Firm (always setting $M R=M C$) will respond by producing more

If Market Price Changes II

- Suppose the market price decreases
- Firm (always setting $M R=M C$) will respond by producing more

If Market Price Changes II

- The firm's marginal cost curve is its (inverse) supply curve ${ }^{\dagger}$

$$
\text { Supply }=M C(q)
$$

- How it will supply the optimal amount of output in response to the market price
- There is an exception to this! We will see shortly!
${ }^{\dagger}$ Mostly...there is an exception we will see shortly!

Calculating Profit

Calculating Average Profit as $A R(q)-A C(q)$

- Profit is

$$
\pi(q)=R(q)-C(q)
$$

Calculating Average Profit as $A R(q)-A C(q)$

- Profit is

$$
\pi(q)=R(q)-C(q)
$$

- Profit per unit can be calculated as:

$$
\begin{aligned}
\frac{\pi(q)}{q} & =A R(q)-A C(q) \\
& =p-A C(q)
\end{aligned}
$$

Calculating Average Profit as $A R(q)-A C(q)$

- Profit is

$$
\pi(q)=R(q)-C(q)
$$

- Profit per unit can be calculated as:

$$
\begin{aligned}
\frac{\pi(q)}{q} & =A R(q)-A C(q) \\
& =p-A C(q)
\end{aligned}
$$

- Multiply by q to get total profit:

$$
\pi(q)=q[p-A C(q)]
$$

Calculating Average Profit as $A R(q)-A C(q)$

- At market price of $p^{*}=\$ 10$
- At $q^{*}=5$ (per unit):
- $A t q^{*}=5$ (totals):

Calculating Average Profit as $A R(q)-A C(q)$

- At market price of $\mathrm{p}^{*}=\$ 10$
- At $q^{*}=5$ (per unit):
- $\operatorname{AR}(5)=\$ 10 /$ unit
- At q* $=5$ (totals):
- $R(5)=\$ 50$

Calculating Average Profit as $A R(q)-A C(q)$

- At market price of $\mathrm{p}^{*}=\$ 10$
- At $q^{*}=5$ (per unit):
- $\operatorname{AR}(5)=\$ 10 /$ unit
- $\operatorname{AC}(5)=\$ 7 /$ unit
- At q* $=5$ (totals):
- $R(5)=\$ 50$
- $C(5)=\$ 35$

Calculating Average Profit as $A R(q)-A C(q)$

- At market price of $\mathrm{p}^{*}=\$ 10$
- At $q^{*}=5$ (per unit):
- $\operatorname{AR}(5)=\$ 10 /$ unit
- $\operatorname{AC}(5)=\$ 7 /$ unit
- $A \pi(5)=\$ 3 /$ unit
- At q* $=5$ (totals):
- $R(5)=\$ 50$
- $C(5)=\$ 35$
- $\pi=\$ 15$

Calculating Average Profit as $A R(q)-A C(q)$

- At market price of $p^{*}=\$ 2$
- At $q^{*}=1$ (per unit):
- At $q^{*}=1$ (totals):

Calculating Average Profit as $A R(q)-A C(q)$

- At market price of $p^{*}=\$ 2$
- At $q^{*}=1$ (per unit):
- $\operatorname{AR}(1)=\$ 2 /$ unit
- At $q^{*}=1$ (totals):
- $R(1)=\$ 2$

Calculating Average Profit as $A R(q)-A C(q)$

- At market price of $p^{*}=\$ 2$
- At $q^{*}=1$ (per unit):
- $\operatorname{AR}(1)=\$ 2 /$ unit
- $\operatorname{AC}(1)=\$ 10 /$ unit
- At $q^{*}=1$ (totals):
- $R(1)=\$ 2$
- $C(1)=\$ 10$

Calculating Average Profit as $A R(q)-A C(q)$

- At market price of $p^{*}=\$ 2$
- At $q^{*}=1$ (per unit):
- $\operatorname{AR}(1)=\$ 2 /$ unit
- $\operatorname{AC}(1)=\$ 10 /$ unit
- $A \pi(1)=-\$ 8 /$ unit
- At $q^{*}=1$ (totals):
- $R(1)=\$ 2$
- $C(1)=\$ 10$
- $\pi(1)=-\$ 8$

Short-Run Shut-Down Decisions

Short-Run Shut-Down Decisions

- What if a firm's profits at q^{*} are negative (i.e. it earns losses)?
- Should it produce at all?

Short-Run Shut-Down Decisions

- Suppose firm chooses to produce nothing $(q=0)$:
- If it has fixed costs $(f>0)$, its profits are:

$$
\pi(q)=p q-C(q)
$$

Short-Run Shut-Down Decisions

- Suppose firm chooses to produce nothing $(q=0)$:
- If it has fixed costs $(f>0)$, its profits are:

$$
\begin{aligned}
& \pi(q)=p q-C(q) \\
& \pi(q)=p q-f-V C(q)
\end{aligned}
$$

Short-Run Shut-Down Decisions

- Suppose firm chooses to produce nothing $(q=0)$:
- If it has fixed costs $(f>0)$, its profits are:

$$
\begin{aligned}
& \pi(q)=p q-C(q) \\
& \pi(q)=p q-f-V C(q) \\
& \pi(0)=-f
\end{aligned}
$$

Short-Run Shut-Down Decisions

- A firm should choose to produce nothing ($q=0$) only when:
π from producing $<\pi$ from not producing

Short-Run Shut-Down Decisions

- A firm should choose to produce nothing $(q=0)$ only when:
π from producing $<\pi$ from not producing

$$
\pi(q)<-f
$$

Short-Run Shut-Down Decisions

- A firm should choose to produce nothing $(q=0)$ only when:
π from producing $<\pi$ from not producing

$$
\begin{array}{r}
\pi(q)<-f \\
p q-V C(q)-f<-f
\end{array}
$$

Short-Run Shut-Down Decisions

- A firm should choose to produce nothing $(q=0)$ only when:
π from producing $<\pi$ from not producing

$$
\begin{aligned}
\pi(q) & <-f \\
p q-V C(q)-f & <-f \\
p q-V C(q) & <0
\end{aligned}
$$

Short-Run Shut-Down Decisions

- A firm should choose to produce nothing $(q=0)$ only when:
π from producing $<\pi$ from not producing

$$
\begin{aligned}
\pi(q) & <-f \\
p q-V C(q)-f & <-f \\
p q-V C(q) & <0 \\
p q & <V C(q)
\end{aligned}
$$

Short-Run Shut-Down Decisions

- A firm should choose to produce nothing $(q=0)$ only when:
π from producing $<\pi$ from not producing

$$
\begin{aligned}
\pi(q) & <-f \\
p q-V C(q)-f & <-f \\
p q-V C(q) & <0 \\
p q & <V C(q) \\
\mathbf{p} & <\mathbf{A V C}(\mathbf{q})
\end{aligned}
$$

Short-Run Shut-Down Decisions

- Shut down price: firm will shut down production in the short run when $p<A V C(q)$

The Firm's Short Run Supply Decision

The Firm's Short Run Supply Decision

The Firm's Short Run Supply Decision

The Firm's Short Run Supply Decision

The Firm's Short Run Supply Decision

The Firm's Short Run Supply Decision

Firm's short run (inverse) supply:

$$
\begin{cases}p=M C(q) & \text { if } p \geq A V C \\ q=0 & \text { If } p<A V C\end{cases}
$$

The Firm's Short Run Supply Decision

Firm's short run (inverse) supply:

$$
\begin{cases}p=M C(q) & \text { if } p \geq A V C \\ q=0 & \text { If } p<A V C\end{cases}
$$

Summary:

1. Choose q^{*} such that $M R(q)=M C(q)$

2. Profit $\pi=q[p-A C(q)]$
3. Shut down if $p<A V C(q)$

$$
\begin{aligned}
& \text { Firm's short run (inverse) supply: } \\
& \begin{cases}p=M C(q) & \text { if } p \geq A V C \\
q=0 & \text { If } p<A V C\end{cases}
\end{aligned}
$$

Choosing the Profit-Maximizing Output q^{*} : Example

Example: Bob's barbershop gives haircuts in a very competitive market, where barbers cannot differentiate their haircuts. The current market price of a haircut is $\$ 15$. Bob's daily short run costs are given by:

$$
\begin{aligned}
C(q) & =0.5 q^{2} \\
M C(q) & =q
\end{aligned}
$$

1. How many haircuts per day would maximize Bob's profits?
2. How much profit will Bob earn per day?
3. Find Bob's shut down price.
