1.3 - Budget Constraint

ECON 306 • Microeconomic Analysis • Fall 2020 Ryan Safner
Assistant Professor of Economics
, safner@hood.edu
Syansafner/microF20
© microF20.classes.ryansafner.com

Outline

Rational Choice Theory.
Constrained Optimization
Consumer Behavior: Basic Framework
The Budget Constraint
Changes in Parameters

The Two Major Models of Economics as a "Science"

Optimization

- Agents have objectives they value
- Agents face constraints
- Make tradeoffs to maximize objectives within constraints

Equilibrium

- Agents compete with others over scarce resources
- Agents adjust behaviors based on prices
- Stable outcomes when adjustments stop

Rational Choice Theory

Consumer Behavior

- How do people decide:
- which products to buy
- which activities to dedicate their time to
- how to save or invest/plan for the future
- A model of behavior we can extend to
 most scenarios
- Answers to these questions are building blocks for demand curves

Rational Choice Theory: Beyond Consumers

- Everyone is a consumer
- "Goods and services" isn't just food, clothing, etc, but anything that you value!
- Consumers making purchasing decisions will be our paradigmatic example
- But we are really talking about how individuals make choices in almost any context!

Constrained Optimization

Constrained Optimization I

- We model most situations as a constrained optimization problem:
- People optimize: make tradeoffs to achieve their objective as best as they can
- Subject to constraints: limited resources (income, time, attention, etc)

Constrained Optimization II

- One of the most generally useful mathematical models
- Endless applications. how we model nearly every decision-maker
consumer, business firm, politician, judge, bureaucrat, voter, dictator, pirate, drug cartel, drug addict, parent, child, etc
- Key economic skill: recognizing how to apply the model to a situation

Constrained Optimization III

- All constrained optimization models have three moving parts:

Constrained Optimization III

- All constrained optimization models have three moving parts:

1. Choose: < some alternative >

Constrained Optimization III

- All constrained optimization models have three moving parts:

1. Choose: < some alternative >
2. In order to maximize: < some objective >

Constrained Optimization III

- All constrained optimization models have three moving parts:

1. Choose: < some alternative >
2. In order to maximize: < some objective >
3. Subject to: < some constraints >

Constrained Optimization: Example I

Example: A Hood student picking courses hoping to achieve the highest GPA while getting an Econ major.

1. Choose:
2. In order to maximize:
3. Subject to:

Constrained Optimization: Example II

Example: How should FedEx plan its delivery route?

1. Choose:

2. In order to maximize:
3. Subject to:

Constrained Optimization: Example III

Example: The U.S. government wants to remain economically competitive but reduce emissions by 25%.

1. Choose:
2. In order to maximize:
3. Subject to:

Constrained Optimization: Example IV

Example: How do elected officials make decisions in politics?

1. Choose:

2. In order to maximize:
3. Subject to:

The Consumer's Problem

- The consumer's constrained optimization problem is:

The Consumer's Problem

- The consumer's constrained optimization problem is:

1. Choose: < a consumption bundle >

The Consumer's Problem

- The consumer's constrained optimization problem is:

1. Choose: < a consumption bundle >
2. In order to maximize: < utility >

The Consumer's Problem

- The consumer's constrained optimization problem is:

1. Choose: < a consumption bundle >
2. In order to maximize: < utility >
3. Subject to: < income and market prices >

Consumer Behavior: Basic Framework

Consumption Bundles

- Imagine a (very strange) supermarket sells xylophones (x) and yams (y)
- Your choices: amounts of x, y to buy as a bundle

Consumption Bundles

- Represent bundles as a vector:

$$
a=\binom{x}{y}
$$

Examples:

$$
a=\binom{4}{12} ; b=\binom{6}{12} ; c=\binom{21}{0}
$$

Consumption Bundles: Graphically

- We can represent bundles graphically
- We'll stick with 2 goods (x, y) in 2dimensions

The Budget Constraint

Affordability

- If you had $\$ 100$ to spend, what bundles of goods $\{x, y\}$ would you buy?
- Only those bundles that are affordable
- Denote prices of each good as $\left\{p_{x}, p_{y}\right\}$
- Let m be the amount of income a consumer has

Affordability

- If you had $\$ 100$ to spend, what bundles of goods $\{x, y\}$ would you buy?
- Only those bundles that are affordable
- Denote prices of each good as $\left\{p_{x}, p_{y}\right\}$
- Let m be the amount of income a consumer has

- A bundle $\{x, y\}$ is affordable at given prices $\left\{p_{x}, p_{y}\right\}$ when:

$$
p_{x} x+p_{y} y \leq m
$$

The Budget Set

- The set of all affordable bundles that a consumer can choose is called the budget set or choice set

$$
p_{x} x+p_{y} y \leq m
$$

The Budget Set \& the Budget Constraint

- The set of all affordable bundles that a consumer can choose is called the budget set or choice set

$$
p_{x} x+p_{y} y \leq m
$$

- The budget constraint is the set of all bundles that spend all income m: ${ }^{\dagger}$

$$
p_{x} x+p_{y} y=m
$$

[^0]
The Budget Constraint, Graphically

- For 2 goods, (x, y)

$$
p_{x} x+p_{y} y=m
$$

The Budget Constraint, Graphically

- For 2 goods, (x, y)

$$
p_{x} x+p_{y} y=m
$$

- Solve for y to graph

$$
y=\frac{m}{p_{y}}-\frac{p_{x}}{p_{y}} x
$$

The Budget Constraint, Graphically

- For 2 goods, (x, y)

$$
p_{x} x+p_{y} y=m
$$

- Solve for y to graph

$$
y=\frac{m}{p_{y}}-\frac{p_{x}}{p_{y}} x
$$

- y-intercept: $\frac{m}{p_{y}}$
- x-intercept: $\frac{m}{p_{x}}$

The Budget Constraint, Graphically

- For 2 goods, (x, y)

$$
p_{x} x+p_{y} y=m
$$

- Solve for y to graph

$$
y=\frac{m}{p_{y}}-\frac{p_{x}}{p_{y}} x
$$

- y-intercept: $\frac{m}{p_{y}}$
- x-intercept: $\frac{m}{p_{x}}$
- slope: $\frac{p_{x}}{p_{y}}$

The Budget Constraint: Example

Example: Suppose you have an income of $\$ 50$ to spend on lattes (l) and burritos (b). The price of lattes is $\$ 5$ and the price of burritos is $\$ 10$. Let l be on the horizontal axis and b be on the vertical axis.

1. Write an equation for the budget constraint (in graphable form).
2. Graph the budget constraint.

Interpreting the Budget Constraint

- Points on the line spend all income
- A: $\$ 5(0 x)+\$ 10(5 y)=\$ 50$
- B: $\$ 5(10 x)+\$ 10(0 y)=\$ 50$
- С: $\$ 5(2 x)+\$ 10(4 y)=\$ 50$
- D: $\$ 5(6 x)+\$ 10(2 y)=\$ 50$

Interpreting the Budget Constraint

- Points on the line spend all income
- A: $\$ 5(0 x)+\$ 10(5 y)=\$ 50$
- B: $\$ 5(10 x)+\$ 10(0 y)=\$ 50$
- C: $\$ 5(2 x)+\$ 10(4 y)=\$ 50$
- D: $\$ 5(6 x)+\$ 10(2 y)=\$ 50$
- Points beneath the line are affordable but don't use all income
- $\mathrm{E}: \$ 5(3 x)+\$ 10(2 y)=\$ 35$

Interpreting the Budget Constraint

- Points on the line spend all income
- A: $\$ 5(0 x)+\$ 10(5 y)=\$ 50$
- B: $\$ 5(10 x)+\$ 10(0 y)=\$ 50$
- C: $\$ 5(2 x)+\$ 10(4 y)=\$ 50$
- D: $\$ 5(6 x)+\$ 10(2 y)=\$ 50$
- Points beneath the line are affordable but don't use all income
- $\mathrm{E}: \$ 5(3 x)+\$ 10(2 y)=\$ 35$
- Points above the line are unaffordable
 (at current income and prices)

Interpretting the Slope

- Slope: market-rate of tradeoff between x and y
- Relative price of x or its opportunity cost:

Consuming 1 more unit of x requires giving up $\frac{p_{x}}{p_{y}}$ units of y

Interpretting the Slope

- Slope: market-rate of tradeoff between x and y
- Relative price of x or its opportunity cost:

Consuming 1 more unit of x requires giving up $\frac{p_{x}}{p_{y}}$ units of y

- Foreshadowing:

Is your valuation of the tradeoff between x and y the same as the
 market rate?

Changes in Parameters

Changes in Parameters

$$
\begin{aligned}
m & =p_{x} x+p_{y} y \\
y & =\frac{m}{p_{y}}-\frac{p_{x}}{p_{y}} x
\end{aligned}
$$

- Budget constraint is a function of specific parameters
- m: income
- p_{x}, p_{y} : market prices
- Economics: how changes in constraints
 affect people's choices

Changes in Income, m

- Changes in income: a parallel shift in budget constraint

Example: An increase in income

- Same slope (relative prices don't change!)
- Gain of affordable bundles

Changes in Income, m: Example

Example: Continuing the lattes and burritos example, (income is $\$ 50$, lattes are $\$ 5$, burritos are $\$ 10)$, suppose your income doubles to $\$ 100$.

1. Find the equation of the new budget constraint (in graphable form).
2. Graph the new budget constraint.

Changes in Relative Prices, p_{x} or p_{y}

- Changes in relative prices: rotate the budget constraint

Example: An increase in the price of x

- Slope steepens: $-\frac{p_{x}^{\prime}}{p_{y}}$
- Loss of affordable bundles

Changes in Relative Prices, p_{x} or p_{y}

- Changes in relative prices: rotate the budget constraint

Example: A decrease in the price of y

- Slope flattens: $-\frac{p_{x}}{p_{y}^{\prime}}$
- Gain of affordable bundles

Economics is About (Changes in) Relative Prices

- Economics is about (changes in) relative prices
- Budget constraint slope is $\left(\frac{p_{x}}{p_{y}}\right)$
- Only "real" changes in relative prices (from changes in market valuations) change consumer constraints

Economics is About (Changes in) Relative Prices

- "Nominal" prices are often meaningless!
- Example: Imagine yourself in a strange country. All you know is that the price of bread is "6"...

Changes in Relative Prices: Example

Example: Continuing the lattes and burritos example (income is $\$ 50$, lattes are $\$ 5$, burritos are \$10).

1. Suppose the price of lattes doubles from $\$ 5$ to $\$ 10$. Find the equation of the new budget constraint and graph it.
2. Return to the original price of lattes ($\$ 5$) and suppose the price of burritos falls from $\$ 10$ to \$5. Find the equation of the new budget constraint and graph it.

[^0]: ${ }^{\dagger}$ Note the difference (the in/equality), budget constraint is the subset of the budget set that spends all income.

