
2.4 — Costs of Production

ECON 306 · Microeconomic Analysis · Fall 2020

Ryan Safner

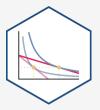
Assistant Professor of Economics

- safner@hood.edu
- ryansafner/microF20
- microF20.classes.ryansafner.com

Recall: The Firm's Two Problems

- 1st Stage: firm's profit maximization problem:
- 1. Choose: < output >
- 2. In order to maximize: < profits >
- We'll cover this later...first we'll explore:
- 2nd Stage: firm's cost minimization problem:
- 1. Choose: < inputs >
- 2. In order to *minimize*: < cost >
- 3. Subject to: < producing the optimal output >
- Minimizing costs ← maximizing profits

A Competitive Market



- We assume (for now) the firm is in a competitive industry:
- 1. Firms' products are perfect substitutes
- 2. Firms are "price-takers", no one firm can affect the *market price*
- 3. Market entry and exit are free[†]

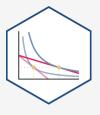
[†]Remember this feature. It turns out to be the most important feature that distinguishes different types of industries!

Profit

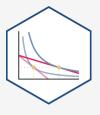
• Recall that profit is is:

$$\pi = \underbrace{pq}_{revenues} - \underbrace{(wl + rk)}_{costs}$$

- We'll first take a closer look at costs today, then at revenues
- Next class we'll put them together to find q^* that maximizes π (the first stage problem)


Opportunity Costs in Production

- Remember, economic costs are different from common conception of "cost"
 - Accounting cost: monetary cost
 - Economic cost: value of next best alternative use of resources given up (i.e. opportunity cost)



- This leads to the difference between
 - Accounting profit: revenues minus accounting costs
 - Economic profit: revenues minues opportunity costs
- One of the most difficult concepts to think about!

- Another helpful perspective:
- Accounting cost: what you historically paid for a resource
- Economic cost: what you can currently get in the market for a selling a resource
 - Resource's value in *alternative* uses

- Because resources are scarce, and have rivalrous uses,
- In functioning markets, the market price measures the opportunity cost of using a resource for an alternative use
- Firms not only pay for direct use of a resource, but also indirectly for "pulling it out" of an alternate use in the economy!

Opportunity Costs in Production

• Every choice incurs an opportunity cost

Examples:

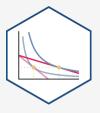
- If you choose to start a business, you may give up your salary at your current job
- If you invest in a factory, you give up other investment opportunities
- If you use an office building you own, you cannot rent it to other people
- If you hire a skilled worker, you must pay them a high enough salary to deter them from working for other firms

Opportunity Costs and Economic Profit

Example: Craig's Consulting has the following revenues and costs:

Item	Amount	
Revenues	\$600,000	
Supplies	(\$20,000)	
Electricity and Water	(\$10,000)	
Employee Salaries	(\$300,000)	
Craig' Salary	(\$200,000)	

- Craig could close his firm and rent out the building he owns for \$50,000 per year.
- Instead of running his own business, Craig could work at a larger consulting firm and expect to earn \$300,000 per year.


- 1. What is Craig's Consulting's accounting cost? economic cost?
- 2. What is Craig's Consulting's accounting profit? economic profit?

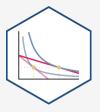
Opportunity Cost is Hard for People

Opportunity Costs vs. Sunk Costs

- Opportunity cost is a forward-looking concept
- Choices made in the past with nonrecoverable costs are called sunk costs
- Sunk costs should not enter into future decisions
- Many people have difficulty letting go of unchangeable past decisions: sunk cost fallacy

Sunk Costs: Examples

Sunks Costs: Examples



The Sunk Cost Fallacy

Common Sunk Costs in Business

- Licensing fees, long-term lease contracts
- Specific capital (with no alternative use): uniforms, menus, signs
- Research & Development spending
- Advertising spending

The Accounting vs. Economic Point of View I

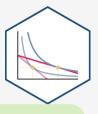
- Helpful to consider two points of view:
- 1. "Accounting point of view": are you taking in more cash than you are spending?
- 2. "Economic point of view": is your product you making the *best social* use of your resources (i.e. are there higher-valued uses of your resources you are keeping them away from)?

The Accounting vs. Economic Point of View II

- **Social implications**: are consumers *best* off with you using scarce resources (with alternative uses!) to produce your current product?
- Remember: this is an economics course, not a business course!
 - What might be good/bad for one business might have bad/good consequences for society!
 - e.g. monopoly vs. competition

Costs in the Short Run

Costs in the Short Run

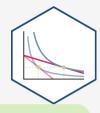


• Total cost function, C(q) relates output q to the total cost of production C

$$C(q) = f + VC(q)$$

- Two kinds of short run costs:
- **1. Fixed costs**, *f* are costs that do not vary with output
 - Only true in the short run! (Consider this the cost of maintaining your capital)
- **2. Variable costs,** VC(q) are costs that vary with output (notice the variable in them!)
 - Typically, the more production of q, the higher the cost
 - e.g. firm is hiring *additional* labor

Fixed vs. Variable costs: Examples

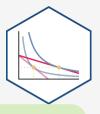

Example: Airlines

Fixed costs: the aicraft

Variable costs: getting one more customer in

a seat

Fixed vs. Variable costs: Examples


Example: Car Factory

Fixed costs: the factory, machines in the

factory

Variable costs: producing one more car

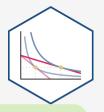
Fixed vs. Variable costs: Examples

Example: Starbucks

Fixed costs: the retail space

Variable costs: producing one more cup of

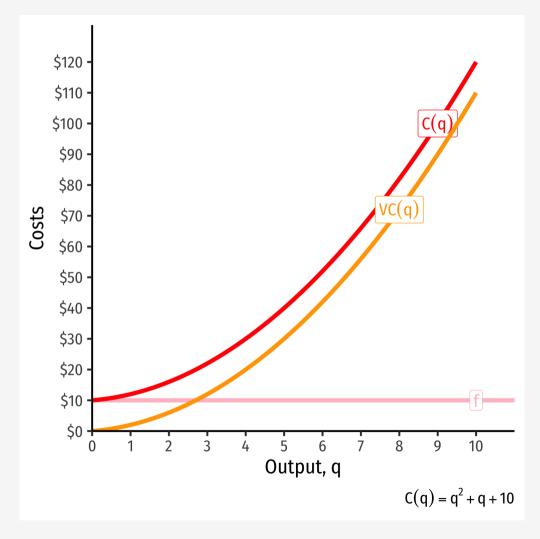
coffee


Fixed vs. Sunk costs

- Diff. between fixed vs. sunk costs?
- Sunk costs are a type of fixed cost that are not avoidable or recoverable
- Many fixed costs can be avoided or changed in the long run
- Common fixed, but *not* sunk, costs:
 - rent for office space, durable equipment, operating permits (that are renewed)

Cost Functions: Example

Example: Suppose your firm has the following total cost function:


$$C(q) = q^2 + q + 10$$

- 1. Write a function for the fixed costs, f.
- 2. Write a function for the variable costs, VC(q).

Cost Functions: Example, Visualized

q	f	VC(q)	C(q)
0	10	0	10
1	10	2	12
2	10	6	16
3	10	12	22
4	10	20	30
5	10	30	40
6	10	42	52
7	10	56	66
8	10	72	82
9	10	90	100

Average Costs

Average Fixed Cost: fixed cost per unit of output:

$$AFC(q) = \frac{f}{q}$$

Average Variable Cost: variable cost per unit of output:

$$AVC(q) = \frac{VC(q)}{q}$$

• Average (Total) Cost: (total) cost per unit of output:

$$AC(q) = \frac{C(q)}{q}$$

Marginal Cost

• Marginal Cost is the change in cost for each additional unit of output produced:

$$MC(q) = \frac{\Delta C(q)}{\Delta q} \approx \frac{C_2 - C_1}{q_2 - q_1}$$

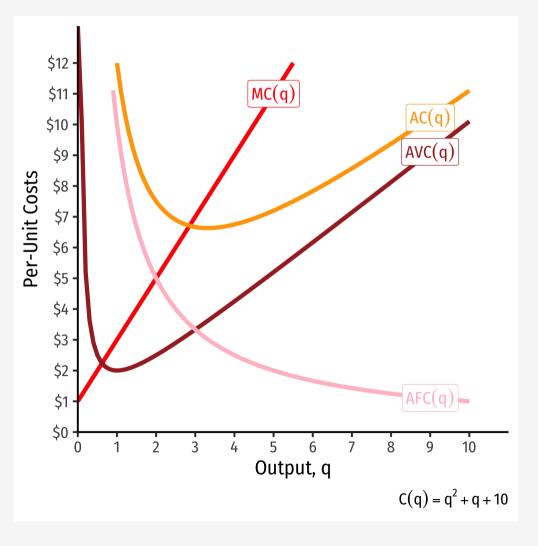
- Calculus: first derivative of the cost function
- Marginal cost is the *primary* cost that matters in making decisions
 - All other costs are driven by marginal costs
 - This is the main cost that firms can "see"

The Importance of Marginal Cost

Dazexiang Rebellion against the Qin Dynasty (209 B.C.)

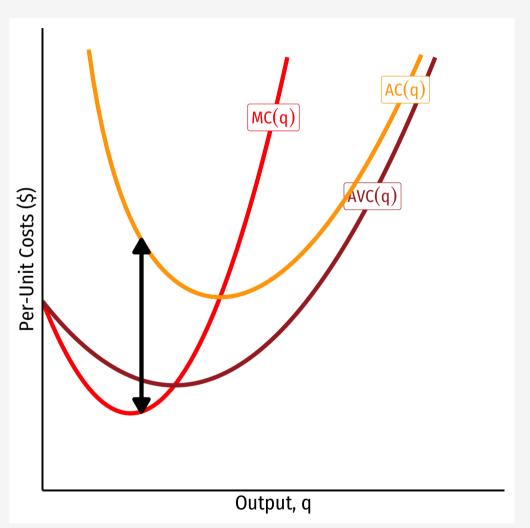
Average and Marginal Costs: Example

Example: A small farm grows strawberries on 5 acres of land that it rents for \$200 a week. The farm can hire workers at a wage of \$250/week for each worker. The table below shows how the output of strawberries (in truckloads) varies with the number of workers hired:

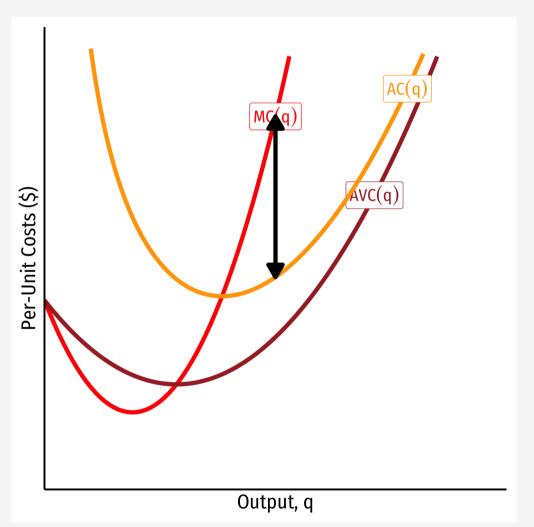

Output	Labor
0	0
1	1
2	3
3	7
4	12
5	18

1. If labor is the only variable cost, calculate the MC(q) and AC(q) for each of the first 5 truckloads.

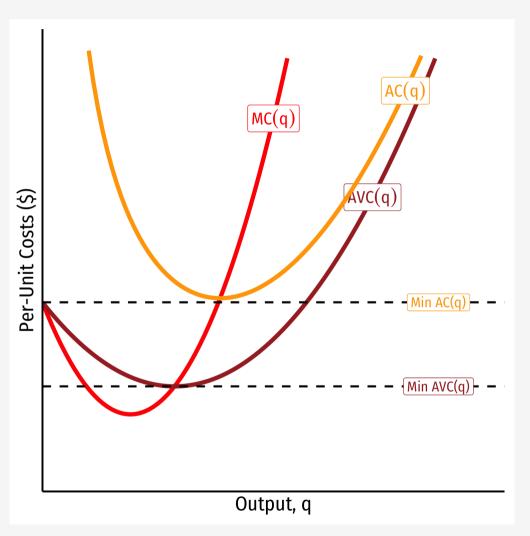
Average and Marginal Costs: Visualized

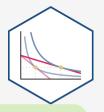

q	C(q)	MC(q)	AFC(q)	AVC(q)	AC(q)
0	10	_	_	_	_
1	12	2	10.00	2	12.00
2	16	4	5.00	3	8.00
3	22	6	3.33	4	7.30
4	30	8	2.50	5	7.50
5	40	10	2.00	6	8.00
6	52	12	1.67	7	8.70
7	66	14	1.43	8	9.40
8	82	16	1.25	9	10.25
9	100	18	1.11	10	11.10

Relationship Between Marginal and Average


- Relationship between a marginal and an average value:
- marginal > average, average ↑

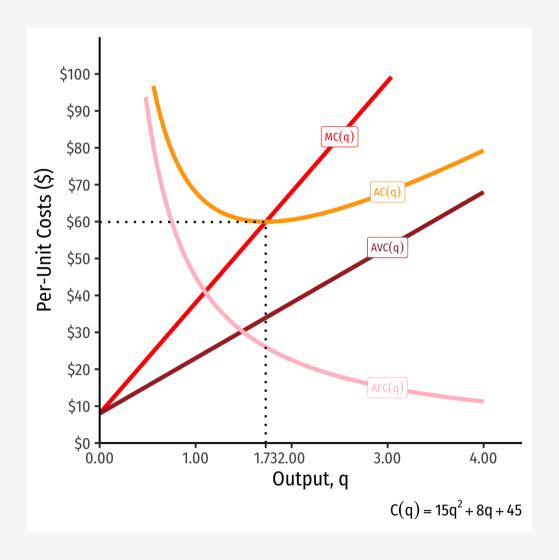
Relationship Between Marginal and Average


- Relationship between a marginal and an average value:
- marginal > average, average ↑
- marginal < average, average ↓


Relationship Between Marginal and Average

- Relationship between a marginal and an average value:
- marginal > average, average ↑
- marginal < average, average ↓
- When marginal = average, average is maximized/minimized
- When MC = AC, AC is at a *minimum*
- When MC = AVC, AVC is at a *minimum*
- Economic importance (later): Break-even price and shut-down price

Short Run Costs: Example


Example: Suppose a firm's cost structure is described by:

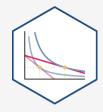
$$C(q) = 15q^2 + 8q + 45$$

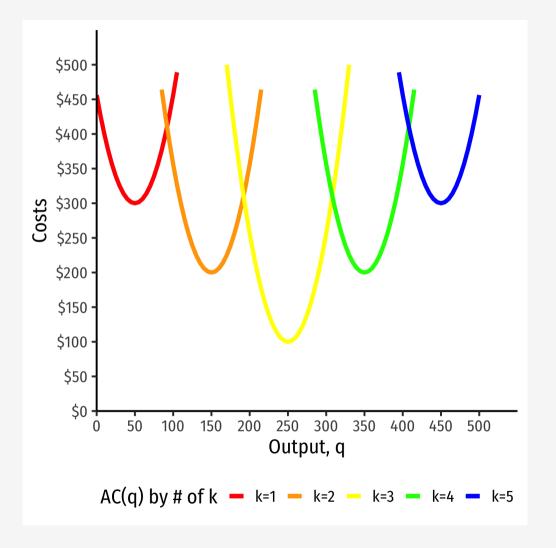
 $MC(q) = 30q + 8$

- 1. Write expressions for the firm's **fixed costs**, **variable costs**, **average fixed costs**, **average variable costs**, and **average (total) costs**.
- 2. Find the minimum average (total) cost.
- 3. Find the minimum average variable cost.

Costs: Example: Visualized

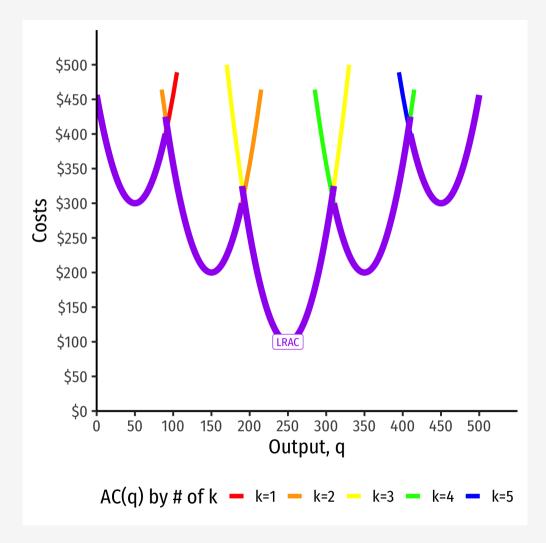
Costs in the Long Run


Costs in the Long Run

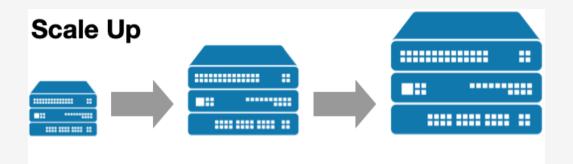

- Long run: firm can change all factors of production & vary scale of production
- Long run average cost, LRAC(q): cost per unit of output when the firm can change both l and k to make more q
- Long run marginal cost, LRMC(q): change in long run total cost as the firm produce an additional unit of q (by changing both l and/or k)

Average Cost in the Long Run

- Long run: firm can choose *k* (factories, locations, etc)
- Separate short run average cost (SRAC) curves for each amount of k potentially chosen



Average Cost in the Long Run

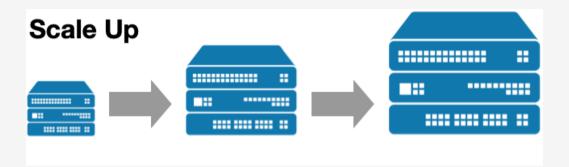

- Long run: firm can choose k (factories, locations, etc)
- Separate short run average cost (SRAC) curves for each amount of \boldsymbol{k} potentially chosen
- Long run average cost (LRAC) curve
 "envelopes" the lowest (optimal) parts of all the SRAC curves!

"Subject to producing the optimal amount of output, choose I and k to minimize cost"

Long Run Costs & Scale Economies I

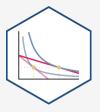
- Further properties about costs based on scale economies of production:
- Economies of scale: costs fall with output

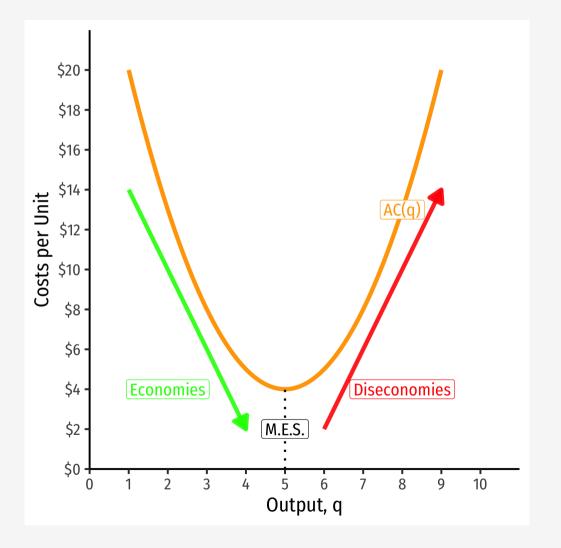

$$\circ AFC > AVC(q)$$


 Diseconomies of scale: costs rise with output

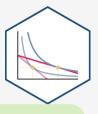
$$\circ AFC < AVC(q)$$

 Constant economies of scale: costs don't change with output


Long Run Costs & Scale Economies I

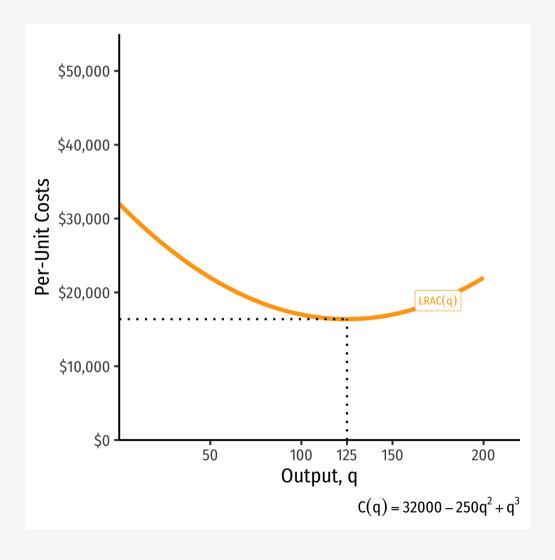


- Note economies of scale ≠ returns to scale!
- Returns to Scale (last class): a technological relationship between inputs & output
- Economies of Scale (this class): an
 economic relationship between output
 and average costs


Long Run Costs & Scale Economies II

- Minimum Efficient Scale: q with the lowest AC(q)
- Economies of Scale: $\uparrow q, \downarrow AC(q)$
- Diseconomies of Scale: $\uparrow q$, $\uparrow AC(q)$

Long Run Costs and Scale Economies: Example


Example: A firm's long run cost structure is as follows:

$$LRC(q) = 32000q - 250q^2 + q^3$$
$$LRMC(q) = 32000 - 500q + 3q^2$$

1. At what levels of output will the firm face economies of scale and diseconomies of scale? (Hint: This firm has a U-shaped LRAC.)

Long Run Costs and Scale Economies: Example

