3.1 — The Supply and Demand Model

ECON 306 · Microeconomic Analysis · Fall 2020

Ryan Safner

Assistant Professor of Economics

- safner@hood.edu
- ryansafner/microF20
- microF20.classes.ryansafner.com

Equilibrium

Recall: 2 Major Models of Economics as a "Science"

Optimization

- Agents have objectives they value
- Agents face constraints
- Make tradeoffs to maximize objectives within constraints

Equilibrium

- Agents compete with others over scarce resources
- Agents adjust behaviors based on prices
- Stable outcomes when adjustments stop

Recall: Optimization and Equilibrium

- If people can *learn* and *change* their behavior, they will always switch to a higher-valued option
- If there are no alternatives that are better, people are at an *optimum*
- If everyone is at an optimum, the system is in *equilibrium*

Equilibrium Analysis: Questions to Answer

- Where do prices come from?
- How do they change?
- How consumers and producers to respond to changes?

Equilibrium Analysis

- An equilibrium is an allocation of resources such that no individual has an incentive to alter their behavior
- In markets: "market-clearing" prices where quantity supplied equals quantity demanded

Partial Equilibrium Analysis

- We will only look at "partial equilibrium" in a single market
- Changes in *one* market often affect *other* markets, affecting the "*general* equilibrium"
 - e.g. a change in the price of corn will affect the market for wheat, soybeans, flax, cereal, sugar, candy, ethanol, gasoline, automobiles, etc...
 - think of all of the *complements*,
 substitutes, upstream and

Recall: Demand

Demand Function

 Demand function relates quantity to price

Example:

$$q = 10 - p$$

• Not graphable (wrong axes)!

Inverse Demand Function

- Inverse demand function relates price to quantity
 - \circ Take demand function and solve for p

Example:

$$p = 10 - q$$

• Graphable (price on vertical axis)!

Inverse Demand Function

- Inverse demand function relates price to quantity
 - \circ Take demand function and solve for p

Example:

$$p = 10 - q$$

• Vertical intercept ("Choke price"): price where $q_D=0$ (\$10), just high enough to discourage *any* purchases

Inverse Demand Function

- Read two ways:
- Horizontally: at any given price, how many units person wants to buy
- Vertically: at any given quantity, the maximum willingness to pay (WTP) for that quantity
 - This way will be very useful later

Recall: Supply

Supply Function

• Supply function relates quantity to price

Example:

$$q = 2p - 4$$

• Not graphable (wrong axes)!

Inverse Supply Function

- Inverse supply function relates price to quantity
 - Take supply function, solve for p

Example:

$$p = 2 + 0.5q$$

• Graphable (price on vertical axis)!

Inverse Supply Function

Example:

$$p = 2 + 0.5q$$

- Slope: 0.5
- Vertical intercept called the "Choke price": price where $q_S=0$ (\$2), just low enough to discourage any sales

Inverse Supply Function

- Read two ways:
- Horizontally: at any given price, how many units firm wants to sell
- Vertically: at any given quantity, the minimum willingness to accept (WTA) for that quantity

Market Equilibrium

Market Equilibrium

- Market-clearing (equilibrium) price (p^*) : \$6.00
- Market-clearing (equilibrium) quantity exchanged (q^*) : 4

Why Markets Tend to Equilibrate

Excess Demand I

Example: Consider *any* price below \$6, such as \$5:

•
$$Q_d = 5$$
 $Q_s = 2$

- $Q_d > Q_s$: excess demand
- A **shortage** of 3 units

Excess Demand II

Example: Consider *any* price below \$6, such as \$5:

- $Q_d = 5$ $Q_s = 2$
- $Q_d > Q_s$: excess demand
- A **shortage** of 3 units

- Sellers will not supply more than 2 units
- For 2 units, some buyers are willing to pay more than \$5

Excess Demand III

Example: Consider *any* price below \$6, such as \$5:

- $Q_d = 5$ $Q_s = 2$
- $Q_d > Q_s$: excess demand
- A **shortage** of 3 units

- Buyers will **raise their bids** against one another, raising the price
- At higher prices, sellers willing to sell more!
- Until equilibrium, no pressure for change, $Q_d = Q_s$

Excess Supply I

Example: Consider *any* price above \$6, such as \$7:

•
$$Q_d = 2$$
 $Q_s = 8$

- $Q_d < Q_s$: excess supply
- A surplus of 6 units

Excess Supply II

Example: Consider *any* price above \$6, such as \$7:

- $Q_d = 2$ $Q_s = 8$
- $Q_d < Q_s$: excess supply
- A surplus of 6 units

- Buyers will not buy more than 2 units
- For 2 units, some sellers willing to accept less than \$8

Excess Supply III

Example: Consider *any* price above \$6, such as \$7:

- $Q_d = 2$ $Q_s = 8$
- $Q_d < Q_s$: excess supply
- A surplus of 6 units

- Sellers will **lower their asking prices** against one another, lowering the price
- At lower prices, buyers willing to buy more!
- Until equilibrium, no pressure for change, $Q_d = Q_s$

Why Markets Tend to Equilibrate

Comparative Statics

Ceterus Paribus I

- Supply function and demand function relate quantity (supplied or demanded) to price only
 - Describes how buyers/sellers respond to changes in market price
- Certainly there are many *other* factors that influence how much a buyer or seller will purchase at a particular price!
 - income, preferences, prices of other goods, expectations, etc.
- A supply or demand function (or graph) requires
 "ceterus paribus" (all else equal)

Recall (for example), Demand I

 A consumer's demand (for good x) depends on current prices & income:

$$q_x^D = q_x^D(m, p_x, p_y)$$

- How does demand for x change?
- 1. Income effects $\left(\frac{\Delta q_x^D}{\Delta m}\right)$: how q_x^D changes with changes in income
- 2. Cross-price effects $\left(\frac{\Delta q_x^D}{\Delta p_y}\right)$: how q_x^D changes with changes in prices of *other* goods (e.g. y)
- 3. **(Own) Price effects** $\left(\frac{\Delta q_x^D}{\Delta p_x}\right)$: how q_x^D changes with changes in price (of x)

Recall (for example), Demand II

- A change in one of the "determinants of demand" will shift demand curve!
 - Change in income (m)
 - Change in **price of other goods** (p_y)
 (substitutes or complements)
 - Change in **preferences** or **expectations** about good (x)
 - Change in number of buyers
- Shows up in (inverse) demand function by a change in intercept (choke price)!
- Again, see my <u>Visualizing Demand Shifters</u>

Ceterus Paribus II

Consider our demand function:

$$q_D = 10 - p$$

- If the **market price** (p) **changes** (perhaps because supply changes), that results in a **change in** *quantity demanded* (q_D)
 - We move *along* the existing demand curve
- Ceterus paribus has not been violated

Ceterus Paribus III

Consider our demand function:

$$q_D = 10 - p$$

- If the something other than price
 changes (income, preferences, price of a
 complement, etc), that results in a
 change in demand
 - We need to draw a new demand curve (or demand function)

$$q_D = 12 - p$$

Ceterus Paribus IV

 There is a big difference between a change in "quantity demanded" and a change in "demand"!

A fall in price causes demand to increase

A fall in price causes quantity demanded to increase

Increase in Demand

Increase in Demand

- More individuals want to buy more of the good at *every* price
- Entire demand curve shifts to the *right*

Increase in Demand

- More individuals want to buy more of the good at *every* price
- Entire demand curve shifts to the *right*
- At the original market price, a **shortage!** $(q_D > q_S)$

Increase in Demand

- More individuals want to buy more of the good at every price
- Entire demand curve shifts to the *right*
- At the original market price, a **shortage!** $(q_D > q_S)$
- Some buyers willing to pay more at this quantity

Increase in Demand

- More individuals want to buy more of the good at *every* price
- Entire demand curve shifts to the *right*
- At the original market price, a **shortage!** $(q_D > q_S)$
- Some buyers willing to pay more at this quantity
- Buyers raise bids, inducing sellers to sell more
- Reach new equilibrium with:
 - higher market-clearing price
 - larger market-clearing quantity exchanged

- Fewer individuals want to buy less of the good at every price
- Entire demand curve shifts to the *left*

- Fewer individuals want to buy less of the good at every price
- Entire demand curve shifts to the *left*
- At the original market price, a **surplus!** $(q_D < q_S)$

- Fewer individuals want to buy less of the good at every price
- Entire demand curve shifts to the *left*
- At the original market price, a **surplus!** $(q_D < q_S)$
- Some sellers willing to accept less at this quantity

- Fewer individuals want to buy less of the good at every price
- Entire demand curve shifts to the *left*
- At the original market price, a **surplus!** $(q_D < q_S)$
- Some sellers willing to accept less at this quantity
- Sellers lower asks, inducing buyers to buy more
- Reach new equilibrium with:
 - lower market-clearing price

- More individuals want to sell more of the good at *every* price
- Entire supply curve shifts to the *right*

- More individuals want to sell more of the good at *every* price
- Entire supply curve shifts to the *right*
- At the original market price, a **surplus!** $(q_D < q_S)$

- More individuals want to sell more of the good at *every* price
- Entire supply curve shifts to the *right*
- At the original market price, a **surplus!** $(q_D < q_S)$
- Some sellers willing to accept less at this quantity

- More individuals want to sell more of the good at *every* price
- Entire supply curve shifts to the *right*
- At the original market price, a **surplus!** $(q_D < q_S)$
- Some sellers willing to accept less at this quantity
- Sellers lower asks, inducing buyers to buy more
- Reach new equilibrium with:
 - lower market-clearing price
 - larger market-clearing quantity exchanged

- Fewer individuals want to sell less of the good at every price
- Entire supply curve shifts to the *left*

- Fewer individuals want to sell less of the good at every price
- Entire supply curve shifts to the *left*
- At the original market price, a **shortage!** $(q_D > q_S)$

- Fewer individuals want to sell less of the good at every price
- Entire supply curve shifts to the *left*
- At the original market price, a **shortage!** $(q_D > q_S)$
- Some buyers willing to pay more at this quantity

- Fewer individuals want to sell less of the good at every price
- Entire supply curve shifts to the *left*
- At the original market price, a **shortage!** $(q_D > q_S)$
- Some buyers willing to pay more at this quantity
- Buyers raise bids, inducing sellers to sell more
- Reach new equilibrium with:
 - higher market-clearing price
 - smaller market-clearing quantity exchanged

Equilibrium Tendencies

- Equilibrium is a *tendency* we can *predict* with our models
- Buyers and sellers raise and lower their bids and asks to adjust to competition from other buyers and sellers, moving the market price
- Ceterus paribus, market prices will settle on an equilibrium given existing conditions
- But conditions are always changing (and so are prices)!