3.1 - The Supply and Demand Model

 ECON 306 • Microeconomic Analysis • Fall 2020 Ryan SafnerAssistant Professor of Economics
, safner@hood.edu
© ryansafner/microF20
© microF20.classes.ryansafner.com

Equilibrium

Recall: 2 Major Models of Economics as a "Science"

Optimization

- Agents have objectives they value
- Agents face constraints
- Make tradeoffs to maximize objectives within constraints

Equilibrium

- Agents compete with others over scarce resources
- Agents adjust behaviors based on prices
- Stable outcomes when adjustments stop

Recall: Optimization and Equilibrium

- If people can learn and change their behavior, they will always switch to a higher-valued option
- If there are no alternatives that are better, people are at an optimum
- If everyone is at an optimum, the system is in equilibrium

Equilibrium Analysis: Questions to Answer

-Where do prices come from?

- How do they change?
- How consumers and producers to respond to changes?

Equilibrium Analysis

- An equilibrium is an allocation of resources such that no individual has an incentive to alter their behavior
- In markets: "market-clearing" prices where quantity supplied equals quantity demanded

Partial Equilibrium Analysis

- We will only look at "partial equilibrium" in a single market
- Changes in one market often affect other markets, affecting the "general equilibrium"
- e.g. a change in the price of corn will affect the market for wheat, soybeans, flax, cereal, sugar, candy, ethanol, gasoline, automobiles, etc...
- think of all of the complements, substitutes, upstream and

Recall: Demand

Demand Function

- Demand function relates quantity to price

Example:

$$
q=10-p
$$

- Not graphable (wrong axes)!

Inverse Demand Function

- Inverse demand function relates price to quantity
- Take demand function and solve for p

Example:

$$
p=10-q
$$

- Graphable (price on vertical axis)!

Inverse Demand Function

- Inverse demand function relates price to quantity
- Take demand function and solve for p

Example:

$$
p=10-q
$$

- Vertical intercept ("Choke price"): price where $q_{D}=0(\$ 10)$, just high enough to discourage any purchases

Inverse Demand Function

- Read two ways:
- Horizontally: at any given price, how many units person wants to buy
- Vertically: at any given quantity, the maximum willingness to pay (WTP) for that quantity
- This way will be very useful later

Recall: Supply

Supply Function

- Supply function relates quantity to price

Example:

$$
q=2 p-4
$$

- Not graphable (wrong axes)!

Inverse Supply Function

- Inverse supply function relates price to quantity
- Take supply function, solve for p

Example:

$$
p=2+0.5 q
$$

- Graphable (price on vertical axis)!

Inverse Supply Function

Example:

$$
p=2+0.5 q
$$

- Slope: 0.5
- Vertical intercept called the "Choke price": price where $q_{S}=0$ (\$2), just low enough to discourage any sales

Inverse Supply Function

- Read two ways:
- Horizontally: at any given price, how many units firm wants to sell
- Vertically: at any given quantity, the minimum willingness to accept (WTA) for that quantity

Market Equilibrium

Market Equilibrium

- Market-clearing (equilibrium) price (p^{*}): \$6.00
- Market-clearing (equilibrium) quantity exchanged $\left(q^{*}\right): 4$

Why Markets Tend to Equilibrate

Excess Demand I

Example: Consider any price below $\$ 6$, such as $\$ 5$:

- $Q_{d}=5 \quad Q_{s}=2$
- $Q_{d}>Q_{s}$: excess demand
- A shortage of 3 units

Excess Demand II

Example: Consider any price below $\$ 6$, such as $\$ 5$:

- $Q_{d}=5 \quad Q_{s}=2$
- $Q_{d}>Q_{s}$: excess demand
- A shortage of 3 units
- Sellers will not supply more than 2 units
- For 2 units, some buyers are willing to pay more than \$5

Excess Demand III

Example: Consider any price below $\$ 6$, such as $\$ 5$:

- $Q_{d}=5 \quad Q_{s}=2$
- $Q_{d}>Q_{s}$: excess demand
- A shortage of 3 units
- Buyers will raise their bids against one another, raising the price

- At higher prices, sellers willing to sell more!
- Until equilibrium, no pressure for change, $Q_{d}=Q_{s}$

Excess Supply I

Example: Consider any price above $\$ 6$, such as $\$ 7$:

- $Q_{d}=2 \quad Q_{s}=8$
- $Q_{d}<Q_{s}$: excess supply
- A surplus of 6 units

Excess Supply II

Example: Consider any price above $\$ 6$, such as $\$ 7$:

- $Q_{d}=2 \quad Q_{s}=8$
- $Q_{d}<Q_{s}$: excess supply
- A surplus of 6 units
- Buyers will not buy more than 2 units
- For 2 units, some sellers willing to accept less than \$8

Excess Supply III

Example: Consider any price above $\$ 6$, such as $\$ 7$:

- $Q_{d}=2 \quad Q_{s}=8$
- $Q_{d}<Q_{s}$: excess supply
- A surplus of 6 units
- Sellers will lower their asking prices against one another, lowering the price

- At lower prices, buyers willing to buy more!
- Until equilibrium, no pressure for change, $Q_{d}=Q_{s}$

Why Markets Tend to Equilibrate

Comparative Statics

Ceterus Paribus I

- Supply function and demand function relate quantity (supplied or demanded) to price only
- Describes how buyers/sellers respond to changes in market price
- Certainly there are many otherfactors that influence how much a buyer or seller will purchase at a particular price!
- income, preferences, prices of other goods, expectations, etc.
- A supply or demand function (or graph) requires "ceterus paribus" (all else equal)

Recall (for example), Demand I

- A consumer's demand (for good x) depends on current prices \& income:

$$
q_{x}^{D}=q_{x}^{D}\left(m, p_{x}, p_{y}\right)
$$

- How does demand for \mathbf{x} change?

1. Income effects $\left(\frac{\Delta q_{x}^{D}}{\Delta m}\right)$: how q_{x}^{D} changes with changes in income
2. Cross-price effects $\left(\frac{\Delta q_{x}^{D}}{\Delta p_{y}}\right)$: how q_{x}^{D} changes with changes in prices of other goods (e.g. y)
3. (Own) Price effects $\left(\frac{\Delta q_{x}^{D}}{\Delta p_{x}}\right)$: how q_{x}^{D} changes with changes in price (of x)

Recall (for example), Demand II

- A change in one of the "determinants of demand" will shift demand curve!
- Change in income (m)
- Change in price of other goods ($p _y$) (substitutes or complements)
- Change in preferences or expectations about good (x)
- Change in number of buyers
- Shows up in (inverse) demand function by a change in intercept (choke price)!
- Again, see my Visualizing Demand Shifters

Ceterus Paribus II

- Consider our demand function:

$$
q_{D}=10-p
$$

- If the market price (p) changes (perhaps because supply changes), that results in a change in quantity demanded $\left(q_{D}\right)$
- We move along the existing demand curve
- Ceterus paribus has not been violated

Ceterus Paribus III

- Consider our demand function:

$$
q_{D}=10-p
$$

- If the something other than price changes (income, preferences, price of a complement, etc), that results in a change in demand
- We need to draw a new demand curve (or demand function)

$$
q_{D}=12-p
$$

Ceterus Paribus IV

- There is a big difference between a change in "quantity demanded" and a change in "demand"!

Increase in Demand

Increase in Demand

- More individuals want to buy more of the good at every price
- Entire demand curve shifts to the right

Increase in Demand

- More individuals want to buy more of the good at every price
- Entire demand curve shifts to the right
- At the original market price, a shortage! $\left(q_{D}>q_{S}\right)$

Increase in Demand

- More individuals want to buy more of the good at every price
- Entire demand curve shifts to the right
- At the original market price, a shortage! $\left(q_{D}>q_{S}\right)$
- Some buyers willing to pay more at this quantity

Increase in Demand

- More individuals want to buy more of the good at every price
- Entire demand curve shifts to the right
- At the original market price, a shortage! $\left(q_{D}>q_{S}\right)$
- Some buyers willing to pay more at this quantity
- Buyers raise bids, inducing sellers to sell more
- Reach new equilibrium with:
- higher market-clearing price
- larger market-clearing quantity exchanged

Decrease in Demand

Decrease in Demand

- Fewer individuals want to buy less of the good at every price
- Entire demand curve shifts to the left

Decrease in Demand

- Fewer individuals want to buy less of the good at every price
- Entire demand curve shifts to the left
- At the original market price, a surplus! $\left(q_{D}<q_{S}\right)$

Decrease in Demand

- Fewer individuals want to buy less of the good at every price
- Entire demand curve shifts to the left
- At the original market price, a surplus! $\left(q_{D}<q_{S}\right)$
- Some sellers willing to accept less at this quantity

Decrease in Demand

- Fewer individuals want to buy less of the good at every price
- Entire demand curve shifts to the left
- At the original market price, a surplus! $\left(q_{D}<q_{S}\right)$
- Some sellers willing to accept less at this quantity
- Sellers lower asks, inducing buyers to buy more
- Reach new equilibrium with:
- lower market-clearing price

Increase in Supply

Increase in Supply

- More individuals want to sell more of the good at every price
- Entire supply curve shifts to the right

Increase in Supply

- More individuals want to sell more of the good at every price
- Entire supply curve shifts to the right
- At the original market price, a surplus! $\left(q_{D}<q_{S}\right)$

Increase in Supply

- More individuals want to sell more of the good at every price
- Entire supply curve shifts to the right
- At the original market price, a surplus! $\left(q_{D}<q_{S}\right)$
- Some sellers willing to accept less at this quantity

Increase in Supply

- More individuals want to sell more of the good at every price
- Entire supply curve shifts to the right
- At the original market price, a surplus! $\left(q_{D}<q_{S}\right)$
- Some sellers willing to accept less at this quantity
- Sellers lower asks, inducing buyers to buy more
- Reach new equilibrium with:
- lower market-clearing price
- larger market-clearing quantity exchanged

Decrease in Supply

Decrease in Supply

- Fewer individuals want to sell less of the good at every price
- Entire supply curve shifts to the left

Decrease in Supply

- Fewer individuals want to sell less of the good at every price
- Entire supply curve shifts to the left
- At the original market price, a shortage! $\left(q_{D}>q_{S}\right)$

Decrease in Supply

- Fewer individuals want to sell less of the good at every price
- Entire supply curve shifts to the left
- At the original market price, a shortage! $\left(q_{D}>q_{S}\right)$
- Some buyers willing to pay more at this quantity

Decrease in Supply

- Fewer individuals want to sell less of the good at every price
- Entire supply curve shifts to the left
- At the original market price, a shortage! $\left(q_{D}>q_{S}\right)$
- Some buyers willing to pay more at this quantity
- Buyers raise bids, inducing sellers to sell more
- Reach new equilibrium with:
- higher market-clearing price
- smaller market-clearing quantity exchanged

Equilibrium Tendencies

- Equilibrium is a tendency we can predict with our models
- Buyers and sellers raise and lower their bids and asks to adjust to competition from other buyers and sellers, moving the market price
- Ceterus paribus, market prices will settle on an equilibrium given existing conditions
- But conditions are always changing (and so are prices)!

