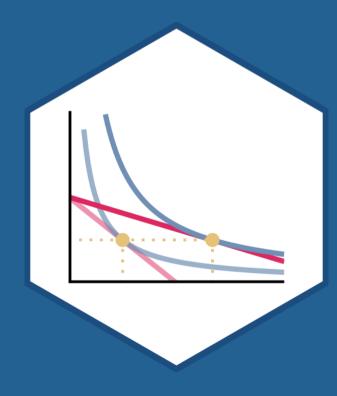
4.1 — Modeling Market Power

ECON 306 · Microeconomic Analysis · Fall 2020

Ryan Safner

Assistant Professor of Economics

- safner@hood.edu
- ryansafner/microF20
- microF20.classes.ryansafner.com



Outline

Market Power

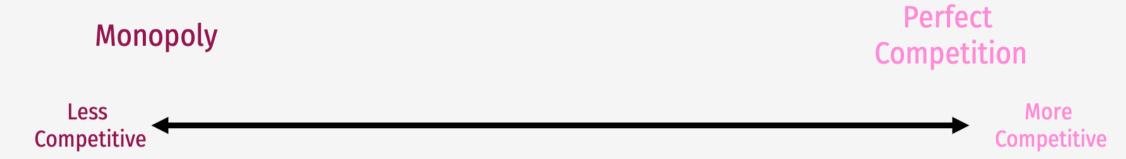
<u>Marginal Revenue</u>

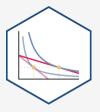
Price Elasticity & Price Mark Up

Profit Maximization Rules, Redux

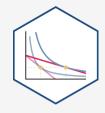


Market Power





Competitive Markets, Recap

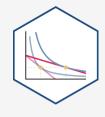


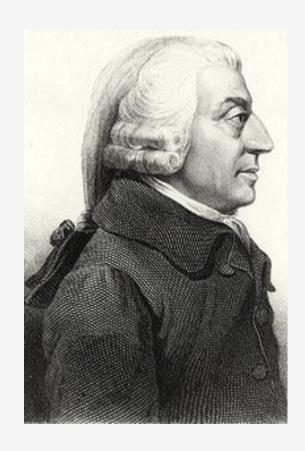
- In a competitive market, we modeled firms as "price-takers" since there were so many of them selling identical products
 - Had to charge market price, could choose optimal q^* to maximize π
- Marginal cost pricing, which is allocatively efficient for society

$$\circ p = MC$$

- $\circ MSB = MSC$
- In the long-run, free entry and exit caused prices to equal (average & marginal) costs and pushed economic profits to zero

Market Power





"People of the same trade seldom meet together, even for merriment and diversion, but the conversation ends in a conspiracy against the public, or in some contrivance to raise prices," (Book I, Chapter 2.2).

Smith, Adam, 1776, *An Enquiry into the Nature and Causes of the Wealth of Nations*

Adam Smith

1723-1790

Market Power vs. Competition

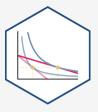


- All sellers would like to raise prices and extract more revenue from consumers
- Competition from other sellers (and potential entrants) drives prices to equal costs & economic profits to zero
- If a firm in a competitive market raised p > MC(q), would lose *all* of its customers!
- Market power: ability to raise p > MC(q) (and *not* lose *all* customers)

Modeling Firms with Market Power

- Firms that have market power behave differently than firms in a competitive market
 - Today: understanding how to model that different behavior
- Start with simple assumption of a single seller: monopoly
- Next class:
 - causes of market power
 - consequences of market power

Modeling Firms with Market Power



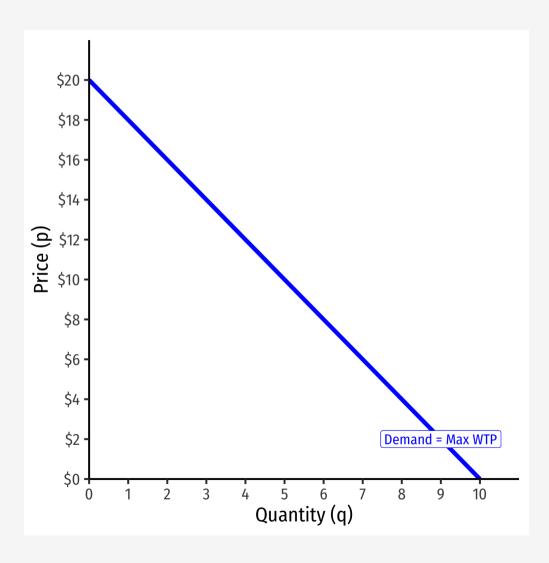
- A firm with market power is a "price-maker"
 - Can choose quantity q^* and price p^*
- We can also call it a "price-searcher"
 - Assuming the same objective as before, firms with market power must **search** for (q^*, p^*) that **maximizes** π
- With a monopoly, we can safely ignore the effects that other firms have on the firm's behavior (because there are none!)
 - Easiest starting point
 - Later we will have to complicate matters

The Monopolist's Problem

- The *monopolist's* profit maximization problem:
- 1. **Choose:** < output and price: (q^*, p^*) >
- 2. In order to maximize: < profits: π >

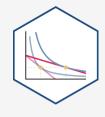
Marginal Revenues

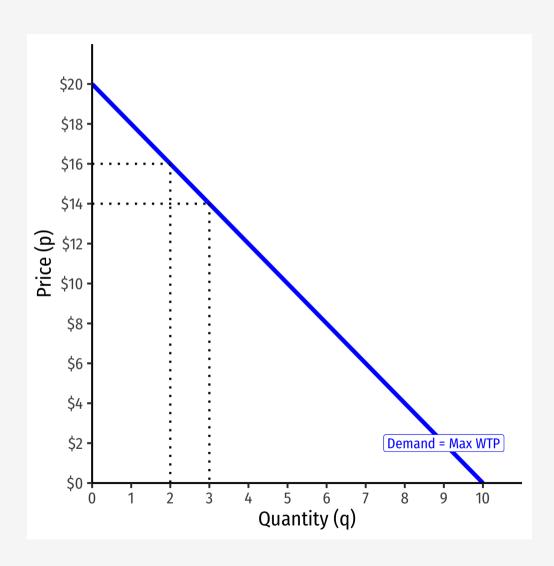
Market Power and Revenues I



- Firms are constrained by relationship between quantity and price that consumers are willing to pay
- Market (inverse) demand describes
 maximum price consumers are willing to
 pay for a given quantity
- Implications:
 - Even a monopoly can't set a price "as high as it wants"
 - Even a monopoly can still earn losses!

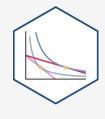
Market Power and Revenues II

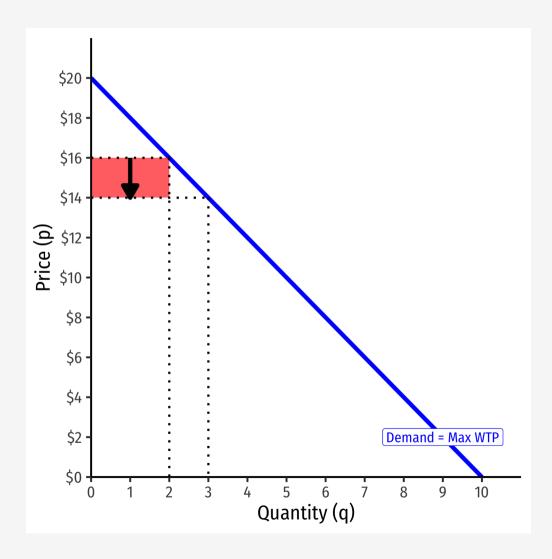




• As firm chooses to produce more q, must lower the price on all units to sell them

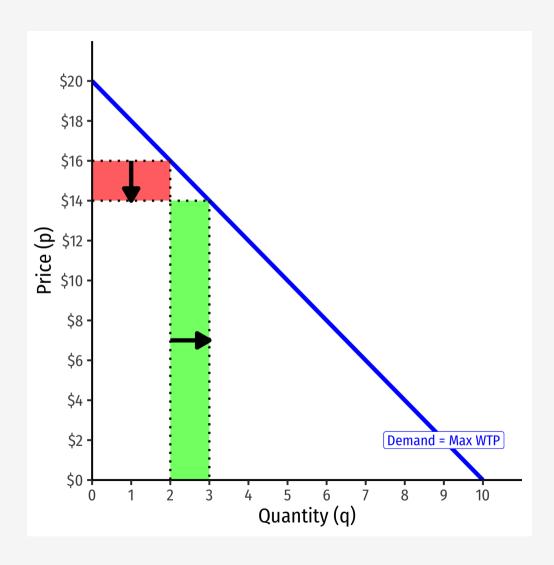
Market Power and Revenues II





- As firm chooses to produce more q, must lower the price on all units to sell them
- Price effect: lost revenue from lowering price on all sales

Market Power and Revenues II



- As firm chooses to produce more q, must lower the price on all units to sell them
- Price effect: lost revenue from lowering price on all sales
- Output effect: gained revenue from increase in sales

Marginal Revenue I

• If a firm increases output, Δq , revenues would change by:

$$\Delta R(q) = p\Delta q + q\Delta p$$

- Output effect: increases number of units sold (Δq) times price p per unit
- Price effect: lowers price per unit (Δp) on all units sold (q)
- Divide both sides by Δq to get Marginal Revenue, MR(q):

$$\frac{\Delta R(q)}{\Delta q} = MR(q) = p + \frac{\Delta p}{\Delta q}q$$

• Compare: demand for a **competitive** firm is perfectly elastic: $\frac{\Delta p}{\Delta q} = 0$, so we saw MR(q) = p!

Marginal Revenue II

If we have a linear inverse demand function of the form

$$p = a + bq$$

- a is the choke price (intercept)
- $\circ b$ is the slope
- Marginal revenue again is defined as:

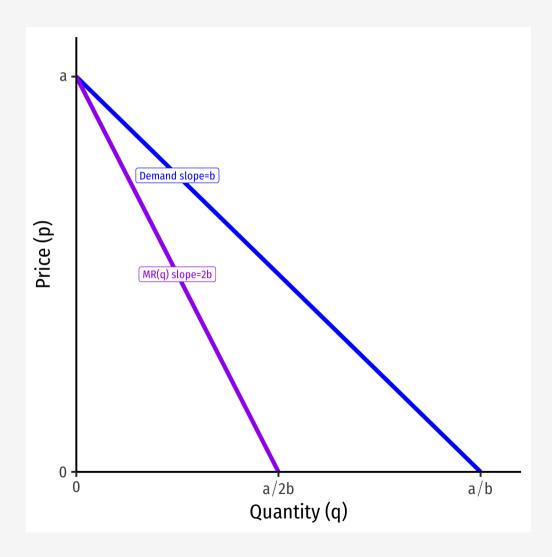
$$MR(q) = p + \frac{\Delta p}{\Delta q}q$$

• Recognize that $\frac{\Delta p}{\Delta q} = \left(\frac{rise}{run}\right)$ is the slope, b,

$$MR(q) = p + (b)q$$

 $MR(q) = (a + bq) + bq$
 $MR(q) = a + 2bq$

Marginal Revenue III



$$p(q) = a + bq$$
$$MR(q) = a + 2bq$$

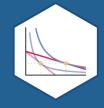
- Marginal revenue starts at same intercept as Demand (a) with twice the slope (2b)
- Don't forget the slopes (b) are always negative!

Marginal Revenue: Example

Example: Suppose the market demand is given by:

$$q = 12.5 - 0.25p$$

- 1. Find the function for a monopolist's marginal revenue curve.
- 2. Calculate the monopolist's marginal revenue if the firm produces 6 units, and 7 units.

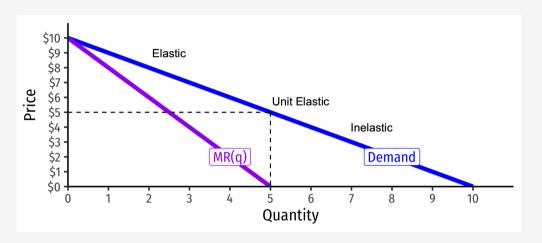


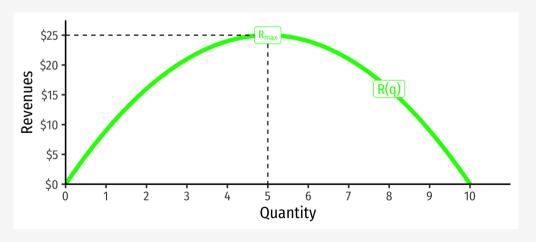
Price Elasticity & Price Mark Up

Revenues and Price Elasticity of Demand

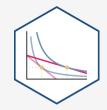
Demand Price Elasticity	MR(q)	R(q)
$ \epsilon > 1$ Elastic	Positive	Increasing
$ \epsilon =1$ Unit	0	Maximized
$ \epsilon < 1$ Inelastic	Negative	Decreasing

- Strong relationship between price elasticity of demand and revenues
- Monopolists only produce where demand is elastic, with positive MR(q)!
 - See appendix in <u>today's class page</u> for a proof



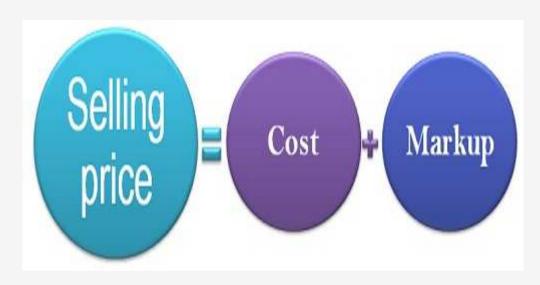


Market Power and Mark Up



- Perfect competition: p = MC(q) (allocatively efficient)
- Market power defined as firm(s)' ability to raise mark up p > MC(q)
 - Even a monopolist is constrained by market demand
- Size of markup depends on price elasticity of demand
 - ↓ price elasticity: ↑ markup

i.e. the *less* responsive to prices consumers are, the *higher* the price the firm can charge



The Lerner Index and Inverse Elasticity Rule I

• Lerner Index measures market power as % of firm's price that is markup above MC(q)

$$L = \frac{p - MC(q)}{p} = -\frac{1}{\epsilon}$$

- i.e. $L \times 100\%$ of firm's price is markup
- $L = 0 \implies$ perfect competition
 - 0% of price is markup, since P = MC(q)
- As $L \to 1 \Longrightarrow$ more market power
 - ∘ 100% of price is markup

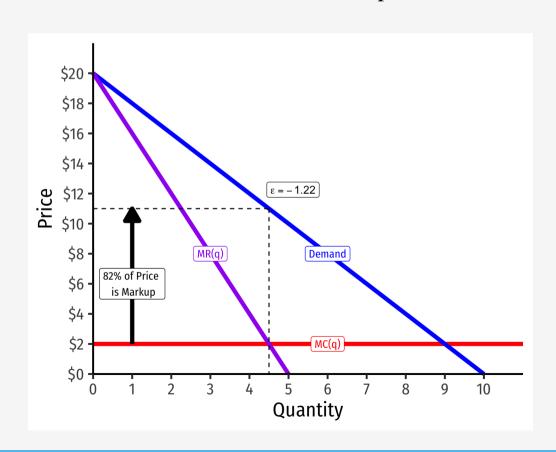
See <u>today's class notes</u> for the derivation.

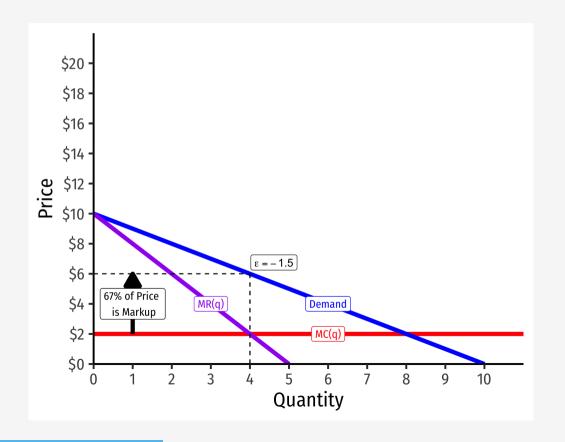
The Lerner Index and Inverse Elasticity Rule II

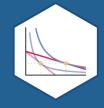
The more (less) elastic a good, the less (more) the optimal markup: $L=\frac{p-MC(q)}{p}=-\frac{1}{\epsilon}$

Demand *Less* Elastic at p^*

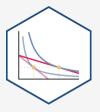
Demand *More* Elastic at p^*



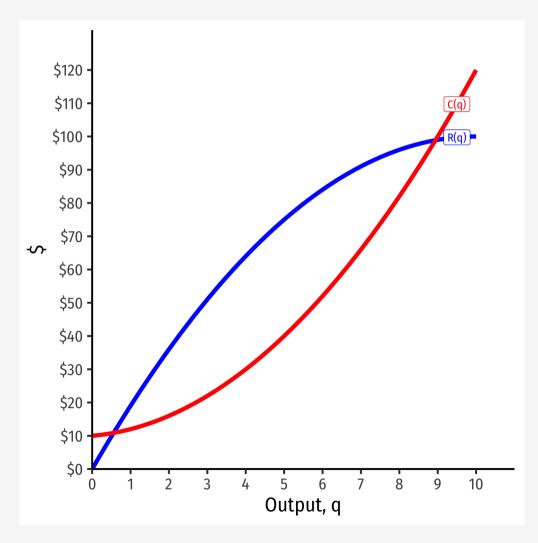


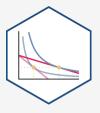


Profit Maximization Rules, Redux

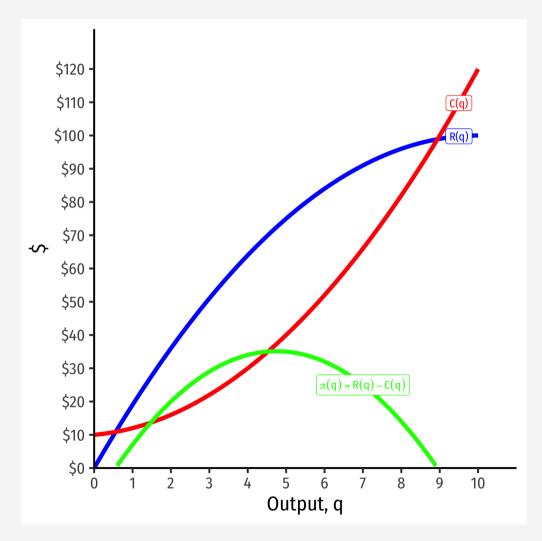


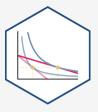
•
$$\pi(q) = R(q) - C(q)$$



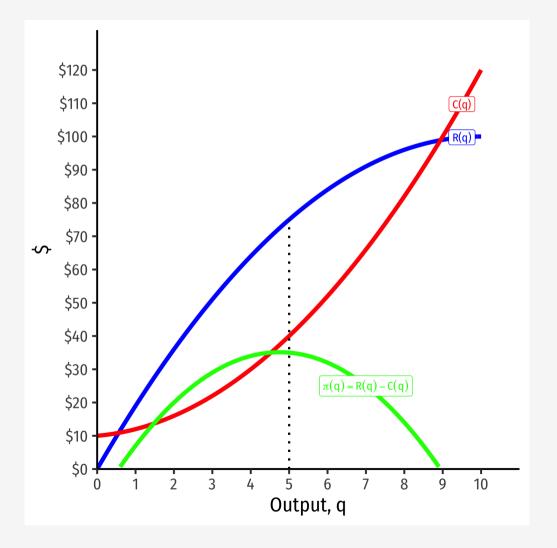


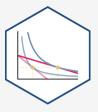
•
$$\pi(q) = R(q) - C(q)$$





- $\pi(q) = R(q) C(q)$
- Graph: find q^* to max $\pi \implies q^*$ where max distance between R(q) and C(q)

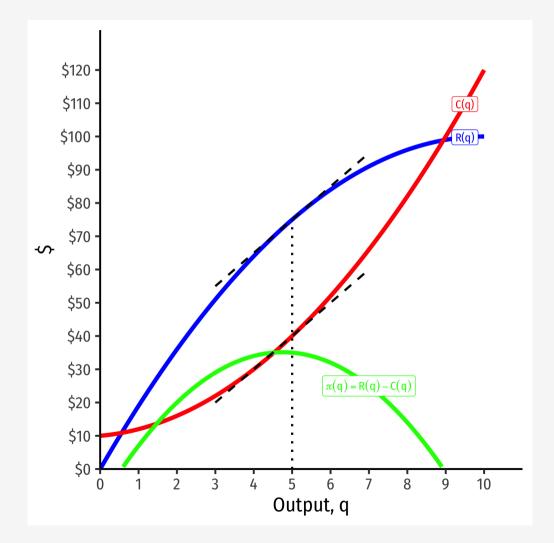


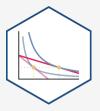


•
$$\pi(q) = R(q) - C(q)$$

- Graph: find q^* to max $\pi \Longrightarrow q^*$ where max distance between R(q) and C(q)
- Slopes must be equal:

$$MR(q) = MC(q)$$

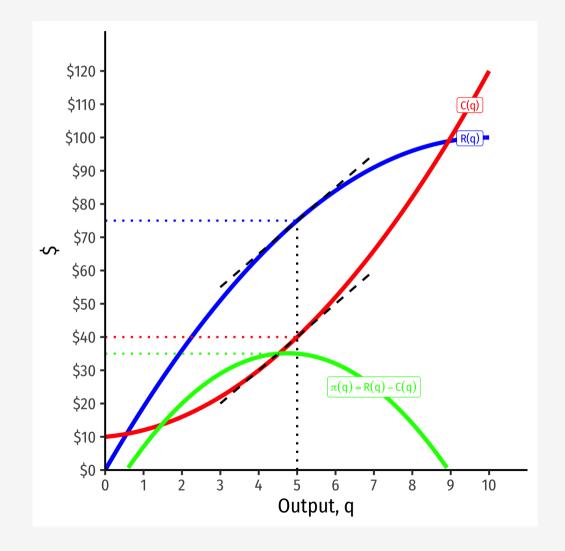




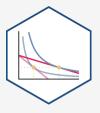
- $\pi(q) = R(q) C(q)$
- Graph: find q^* to max $\pi \Longrightarrow q^*$ where max distance between R(q) and C(q)
- Slopes must be equal:

$$MR(q) = MC(q)$$

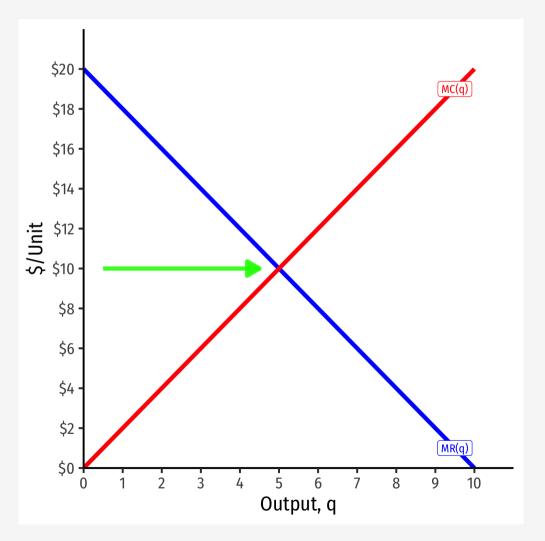
• At $q^* = 5$: • R(q) = 75• C(q) = 40• $\pi(q) = 35$



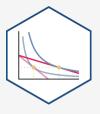
Visualizing Marginal Profit As MR(q)-MC(q)



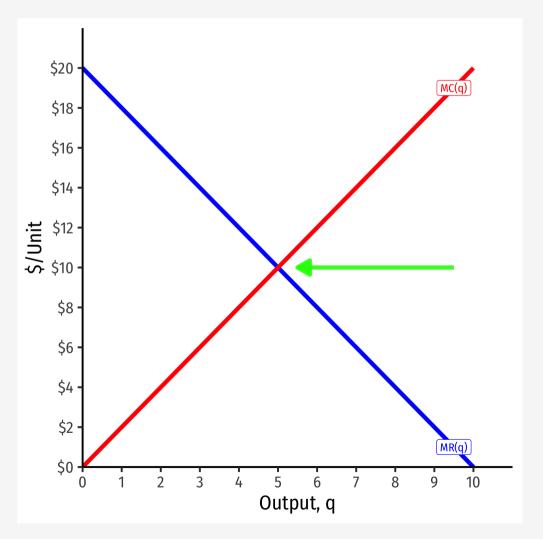
- At low output $q < q^*$, can increase π by producing more
- MR(q) > MC(q)



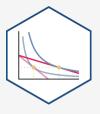
Visualizing Marginal Profit As MR(q)-MC(q)



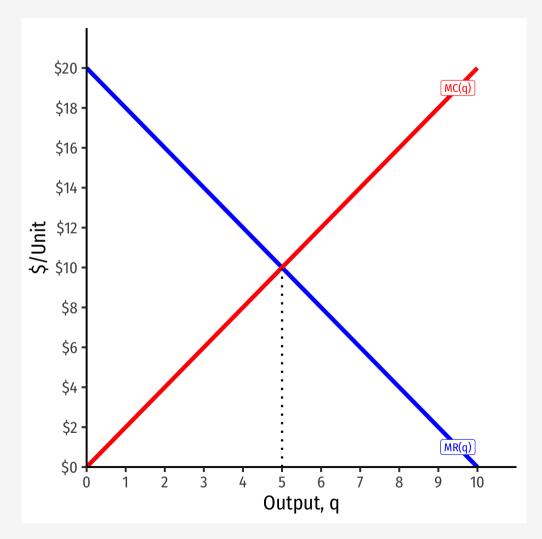
- At high output $q>q^*$, can increase π by producing less
- MR(q) < MC(q)

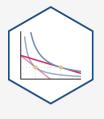


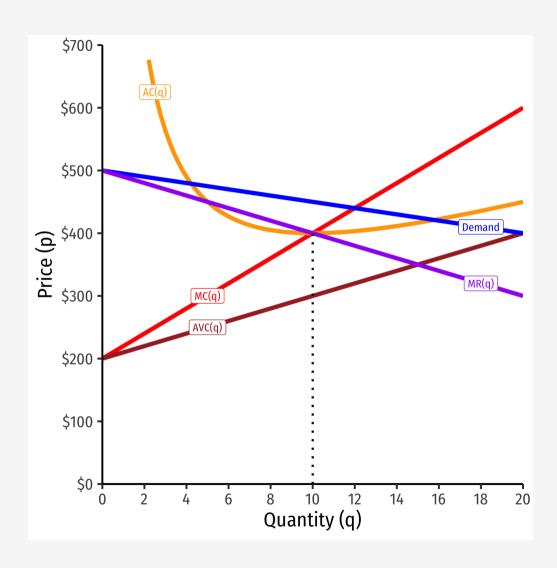
Visualizing Marginal Profit As MR(q)-MC(q)



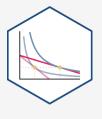
• π is *maximized* where MR(q) = MC(q)

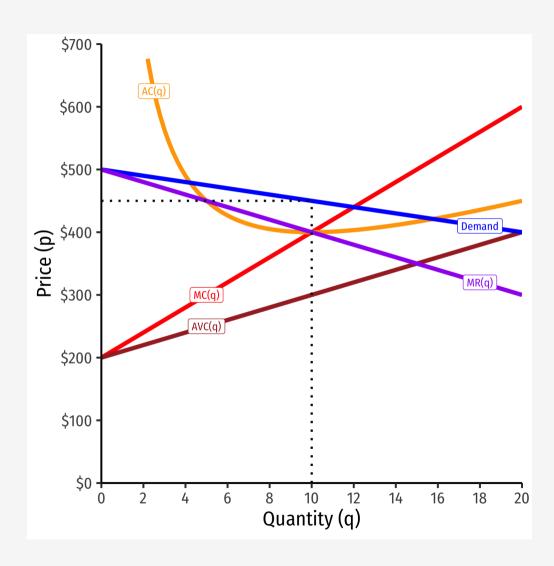




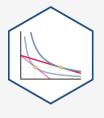


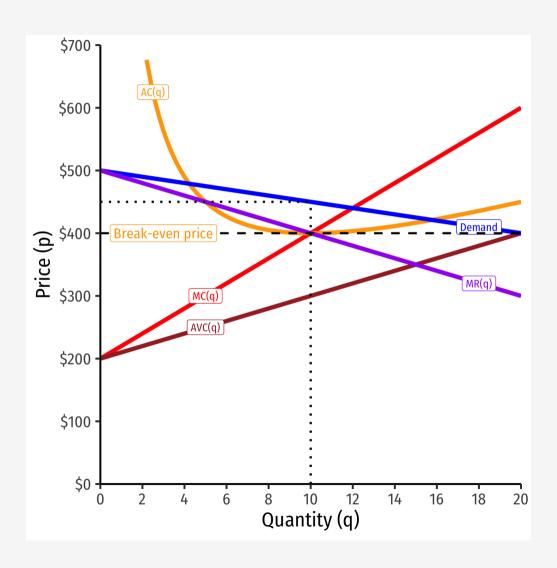
• Profit-maximizing quantity is always q^* where MR(q) = MC(q)



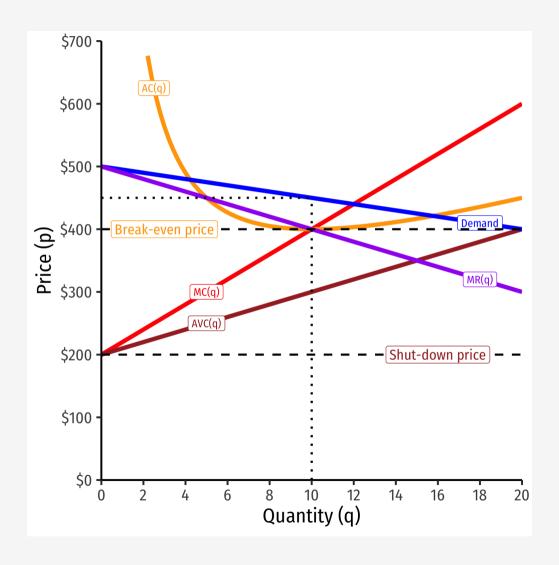


- Profit-maximizing quantity is always q^* where MR(q) = MC(q)
- But monopolist faces entire market demand
 - Can charge as high as consumers are
 WTP Market Demand





- Profit-maximizing quantity is always q^* where MR(q) = MC(q)
- But monopolist faces entire market demand
 - Can charge as high as consumers are
 WTP Market Demand
- Break even price $p = AC(q)_{min}$



- Profit-maximizing quantity is always q^* where MR(q) = MC(q)
- But monopolist faces entire market demand
 - Can charge as high as consumers are
 WTP Market Demand
- Break even price $p = AC(q)_{min}$
- Shut-down price $p = AVC(q)_{min}$

Monopolist's Supply Decisions

- 1. Produce the optimal amount of output q^* where MR(q) = MC(q)
- 2. Raise price to maximum consumers are WTP: $p^* = Demand(q^*)$
- 3. Calculate profit with average cost: $\pi = [p AC(q)]q$
- 4. Shut down in the *short run* if p < AVC(q)
 - Minimum of AVC curve where MC(q) = AVC(q)
- 5. Exit in the *long run* if p < AC(q)
 - Minimum of AC curve where MC(q) = AC(q)

The Profit Maximizing Quantity & Price: Example

Example: Consider the market for iPhones. Suppose Apple's costs are:

$$C(q) = 2.5q^2 + 25,000$$

 $MC(q) = 5q$

The demand for iPhones is given by (quantity is in millions of iPhones):

$$q = 300 - 0.2p$$

- 1. Find Apple's profit-maximizing quantity and price.
- 2. How much total profit does Apple earn?
- 3. How much of Apple's price is markup over (marginal) cost?
- 4. What is the price elasticity of demand at Apple's profit-maximizing output?